- 注册时间
- 2013-12-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 941
- 在线时间
- 小时
|
发表于 2014-6-28 15:52:22
|
显示全部楼层
为了方便复制,
源代码贴出来
- Clear["Global`*"];(*Clear all variables*)
- (*很显然定义域是三维空间的一个三角形,先用拉格朗日乘子法计算中心区域的可能的最值*)
- fun=(2*a-b)(2*b-c)(2*c-a)+x*(a+b+c-1)
- fa=D[fun,a]
- fb=D[fun,b]
- fc=D[fun,c]
- fx=D[fun,x]
- sol1=Solve[{fa==0,fb==0,fc==0,fx==0},{a,b,c,x}]
- Print["显示三角形内部的最值"]
- sol11=fun/.sol1
- Print["数值化"]
- N@sol11
- (*不失一般性,求出c=0的这条边上的最值,a=0,b=0的边是对称的*)
- c=0
- fun=(2*a-b)(2*b-c)(2*c-a)+x*(a+b+c-1)
- fa=D[fun,a]
- fb=D[fun,b]
- fx=D[fun,x]
- sol2=Solve[{fa==0,fb==0,fx==0},{a,b,x}]
- Print["显示边上的最值"]
- sol22=fun/.sol2
- Print["数值化"]
- N@sol22
复制代码
使用拉格朗日乘子法的最终求解结果
In[151]:= Clear["Global`*"];(*Clear all \
variables*)(*很显然定义域是三维空间的一个三角形,先用拉格朗日乘子法计算中心区域的可能的最值*)fun = (2*a -
b) (2*b - c) (2*c - a) + x*(a + b + c - 1)
fa = D[fun, a]
fb = D[fun, b]
fc = D[fun, c]
fx = D[fun, x]
sol1 = Solve[{fa == 0, fb == 0, fc == 0, fx == 0}, {a, b, c, x}]
Print["显示三角形内部的最值"]
sol11 = fun /. sol1
Print["数值化"]
N@sol11
(*不失一般性,求出c=0的这条边上的最值,a=0,b=0的边是对称的*)
c = 0
fun = (2*a - b) (2*b - c) (2*c - a) + x*(a + b + c - 1)
fa = D[fun, a]
fb = D[fun, b]
fx = D[fun, x]
sol2 = Solve[{fa == 0, fb == 0, fx == 0}, {a, b, x}]
Print["显示边上的最值"]
sol22 = fun /. sol2
Print["数值化"]
N@sol22
Out[151]= (2 a - b) (2 b - c) (-a + 2 c) + (-1 + a + b + c) x
Out[152]= -(2 a - b) (2 b - c) + 2 (2 b - c) (-a + 2 c) + x
Out[153]= 2 (2 a - b) (-a + 2 c) - (2 b - c) (-a + 2 c) + x
Out[154]= 2 (2 a - b) (2 b - c) - (2 a - b) (-a + 2 c) + x
Out[155]= -1 + a + b + c
Out[156]= {{x -> -(1/9), b -> 1/3, c -> 1/3, a -> 1/3}, {x -> 0,
b -> 1/7, c -> 2/7, a -> 4/7}, {x -> 0, b -> 2/7, c -> 4/7,
a -> 1/7}, {x -> 0, b -> 4/7, c -> 1/7, a -> 2/7}}
During evaluation of In[151]:= 显示三角形内部的最值
Out[158]= {1/27, 0, 0, 0}
During evaluation of In[151]:= 数值化
Out[160]= {0.037037, 0., 0., 0.}
Out[161]= 0
Out[162]= -2 a (2 a - b) b + (-1 + a + b) x
Out[163]= -4 a b - 2 (2 a - b) b + x
Out[164]= -2 a (2 a - b) + 2 a b + x
Out[165]= -1 + a + b
Out[166]= {{x -> 4/81 (10 - 7 Sqrt[7]), a -> 1/9 (4 - Sqrt[7]),
b -> 1/9 (5 + Sqrt[7])}, {x -> 4/81 (10 + 7 Sqrt[7]),
a -> 1/9 (4 + Sqrt[7]), b -> 1/9 (5 - Sqrt[7])}}
During evaluation of In[151]:= 显示边上的最值
Out[168]= {-(2/
81) (4 - Sqrt[7]) (5 + Sqrt[7]) (1/9 (-5 - Sqrt[7]) +
2/9 (4 - Sqrt[7])) +
4/81 (10 - 7 Sqrt[7]) (-1 + 1/9 (4 - Sqrt[7]) + 1/9 (5 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-1 + 1/9 (5 - Sqrt[7]) + 1/9 (4 + Sqrt[7])) -
2/81 (5 - Sqrt[7]) (4 + Sqrt[7]) (1/9 (-5 + Sqrt[7]) +
2/9 (4 + Sqrt[7]))}
During evaluation of In[151]:= 数值化
Out[170]= {0.140251, -0.469469} |
|