- 注册时间
- 2013-10-24
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 8854
- 在线时间
- 小时
|
楼主 |
发表于 2014-6-30 11:16:43
|
显示全部楼层
看到"由“陈计的一道代数不等式”所发出的疑问"这个帖子(http://bbs.emath.ac.cn/thread-2488-1-1.html),发现对于类似的多元轮换式的最值其实有一定内在限制的。我们这里也可以同样推广一下,找到临界值。
首先只考虑`n=3`(即三个变量)的情况,固定三个变量的和为`1`,将目标式中每一项内的系数`2`改为`k`,即:
`a,b,c \geqslant 0`,`a+b+c=1`,给定`k \geqslant 1`,求`P=(ka-b)(kb-c)(kc-a)`的最值。
由于条件和目标式是轮换式,故不是一般性可设`a\leqslant b \leqslant c`,此时`kc-a>0`已经提前满足. 根据mathe在2#的思路,该问题需要分情况讨论:
1) `ka-b>0`,`kb-c>0`,根据AG-GM不等式,`\D P \leqslant (\frac{k-1}{3})^3`,当且仅当`a=b=c`时等号成立。
2) `ka-b<0`,`kb-c<0`,此时`a=0`才能有最大值$$\begin{align*}P = (b-ka)(c-kb)(kc-a) &\leqslant b(c-kb+a)(kc-a+(k+1)a)\\ & = kb(1-(k+1)b)(1-b)=f(b)\end{align*}$$考虑`0\leqslant b <1`时,`f(b)`的极值情况。令`f'(b)=0`,求出两个根$$b_1=\frac{-\sqrt{k^2+k+1}+k+2}{3 (k+1)}, \quad b_2=\frac{\sqrt{k^2+k+1}+k+2}{3 (k+1)} $$分别代入`f''(b)`,有$$f''(b)|_{b=b_1}=-2 k \sqrt{k^2+k+1}<0(极大值位置),\quad f''(b)|_{b=b_2}=2 k \sqrt{k^2+k+1}>0(极小值位置).$$考虑到`k \geqslant 1`时,`\D b_1\leqslant \frac{1}{6} \left(3-\sqrt{3}\right)<1`,`\D b_2\leqslant \frac{1}{6} \left(3+\sqrt{3}\right)<1 `,故极值点可取到。于是,
当`a=0`,`b=b_1`,`c=1-b_1`时,`P`的极大值为$$\frac{k \left(\sqrt{k^2+k+1}+1\right)^2}{(\sqrt{k^2+k+1}-k) \left(\sqrt{k^2+k+1}+k+2\right)^3}$$或者分母有理化,化为$$
-\frac{k \left(-\sqrt{k^2+k+1}+k-1\right) \left(-\sqrt{k^2+k+1}+k+2\right) \left(\sqrt{k^2+k+1}+2 k+1\right)}{27 (k+1)^2}$$
当`a=0`,`b=b_2`,`c=1-b_2`时,P的极小值为$$\frac{\left(k \left(\sqrt{k^2+k+1}-1\right)\right)^2}{\left(\sqrt{k^2+k+1}+k\right) \left(-\sqrt{k^2+k+1}+k+2\right)^3}$$或者分母有理化为$$-\frac{k \left(-\sqrt{k^2+k+1}+2 k+1\right) \left(\sqrt{k^2+k+1}+k-1\right) \left(\sqrt{k^2+k+1}+k+2\right)}{27 (k+1)^2}$$
3) 仅有`ka-b<0`或者`kb-c<0`,此时`P<0`,`P`只能取得最小值,根据mathe推断,只有`ka-b<0`且`a=0`时`P`的绝对值最大,故才有最小值。分析过程与2)一模一样。
综上,`P`的最大值为$$\max\left\{\frac{k \left(\sqrt{k^2+k+1}+1\right)^2}{\left(\sqrt{k^2+k+1}-k\right) \left(\sqrt{k^2+k+1}+k+2\right)^3}, \frac{(k-1)^3}{27}\right\}$$最小值为$$\frac{\left(k \left(\sqrt{k^2+k+1}-1\right)\right)^2}{\left(\sqrt{k^2+k+1}+k\right) \left(-\sqrt{k^2+k+1}+k+2\right)^3}$$易知`\D k\geqslant \frac{3+\sqrt{5}}{2}\approx2.618033988749895 `时,`P`的最大值为`\D \frac{(k-1)^3}{27}`,否则是前者。
很明显,1 楼中是在`k=2`时的特例,而`2<2.618`,所以
当`a=0`,`\D b=\frac{4-\sqrt{7}}{9}`,`\D c=\frac{5+\sqrt{7}}{9}`时,`P`的最大值为`\D \frac{4(7\sqrt{7}-10)}{243} (\approx 0.14025117987575533)`;
当`a=0`,`\D b=\frac{ 4+\sqrt{7}}{9}`,`\D c=\frac{5-\sqrt{7}}{9}`时,`P`的最小值为`\D -\frac{4}{243}\left(10+7 \sqrt{7}\right)(\approx -0.46946928687164013)`
若将`a,b,c`的和改成`S`,那么是否可以继续按照上述分析下去?进一步,如果`n=4,5,...`上述临界值也会随之改变,不知会有怎样的变动。目前对于`k=2,S=1,n>3`的情况,mathe跟帖有详述。 |
|