- 注册时间
- 2017-1-14
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 9320
- 在线时间
- 小时
|
楼主 |
发表于 2019-9-19 11:34:44
|
显示全部楼层
本帖最后由 王守恩 于 2019-9-19 12:23 编辑
用\(\D f_{k}(n)\ \)表示\(\ \D x_{1}+2x_{2}+3x_{3}+\cdots\cdots+kx_{k}=n\ \)的非负整数解的个数。
\(\D f_{1}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^1\ \frac{1}{1-x^i},\ (x,\ 0,\ n)\big],\ x\big]\)
\(\D f_{1}(n)=1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1\)
\(\D f_{2}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^2\ \frac{1}{1-x^i},\ (x,\ 0,\ n)\big],\ x\big]\)
\(\D f_{2}(n)=1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15\)
\(\D f_{3}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^3\ \frac{1}{1-x^i},\ (x,\ 0,\ n)\big],\ x\big]\)
\(\D f_{3}(n)=1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70\)
\(\D f_{4}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^4\ \frac{1}{1-x^i},\ (x,\ 0,\ n)\big],\ x\big]\)
\(\D f_{4}(n)=1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 34, 39, 47, 54, 64, 72, 84, 94, 108, 120, 136, 150, 169\)
\(\D f_{5}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^5\ \frac{1}{1-x^i},\ (x,\ 0,\ n)\big],\ x\big]\)
\(\D f_{5}(n)=1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 84, 101, 119, 141, 164, 192, 221, 255, 291\)
\(\D f_{6}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^6\ \frac{1}{1-x^i},\ (x,\ 0,\ n)\big],\ x\big]\)
\(\D f_{6}(n)=1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 58, 71, 90, 110, 136, 163, 199, 235, 282, 331, 391, 454\)
\(\D f_{7}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^7\ \frac{1}{1-x^i},\ (x,\ 0,\ n)\big],\ x\big]\)
\(\D f_{7}(n)=1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 49, 65, 82, 105, 131, 164, 201, 248, 300, 364, 436, 522, 618\)
\(\D f_{8}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^8\ \frac{1}{1-x^i},\ (x,\ 0,\ n)\big],\ x\big]\)
\(\D f_{8}(n)=1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 52, 70, 89, 116, 146, 186, 230, 288, 352, 434, 525, 638, 764\)
\(\D f_{9}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^9\ \frac{1}{1-x^i},\ (x,\ 0,\ n)\big],\ x\big]\)
\(\D f_{9}(n)=1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 73, 94, 123, 157, 201, 252, 318, 393, 488, 598, 732, 887\)
|
|