| 
注册时间2017-1-14最后登录1970-1-1威望 星金币 枚贡献 分经验 点鲜花 朵魅力 点上传 次下载 次积分10681在线时间 小时 
 | 
 
 楼主|
发表于 2019-9-19 11:34:44
|
显示全部楼层 
| 本帖最后由 王守恩 于 2019-9-19 12:23 编辑 
 
 用\(\D f_{k}(n)\ \)表示\(\ \D x_{1}+2x_{2}+3x_{3}+\cdots\cdots+kx_{k}=n\ \)的非负整数解的个数。
 \(\D f_{1}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^1\ \frac{1}{1-x^i},\ (x,\  0,\  n)\big],\ x\big]\)
 \(\D f_{1}(n)=1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1\)
 \(\D f_{2}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^2\ \frac{1}{1-x^i},\ (x,\  0,\  n)\big],\ x\big]\)
 \(\D f_{2}(n)=1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15\)
 \(\D f_{3}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^3\ \frac{1}{1-x^i},\ (x,\  0,\  n)\big],\ x\big]\)
 \(\D f_{3}(n)=1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70\)
 \(\D f_{4}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^4\ \frac{1}{1-x^i},\ (x,\  0,\  n)\big],\ x\big]\)
 \(\D f_{4}(n)=1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 34, 39, 47, 54, 64, 72, 84, 94, 108, 120, 136, 150, 169\)
 \(\D f_{5}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^5\ \frac{1}{1-x^i},\ (x,\  0,\  n)\big],\ x\big]\)
 \(\D f_{5}(n)=1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 84, 101, 119, 141, 164, 192, 221, 255, 291\)
 \(\D f_{6}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^6\ \frac{1}{1-x^i},\ (x,\  0,\  n)\big],\ x\big]\)
 \(\D f_{6}(n)=1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 58, 71, 90, 110, 136, 163, 199, 235, 282, 331, 391, 454\)
 \(\D f_{7}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^7\ \frac{1}{1-x^i},\ (x,\  0,\  n)\big],\ x\big]\)
 \(\D f_{7}(n)=1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 49, 65, 82, 105, 131, 164, 201, 248, 300, 364, 436, 522, 618\)
 \(\D f_{8}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^8\ \frac{1}{1-x^i},\ (x,\  0,\  n)\big],\ x\big]\)
 \(\D f_{8}(n)=1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 52, 70, 89, 116, 146, 186, 230, 288, 352, 434, 525, 638, 764\)
 \(\D f_{9}(n)=\coefficientlist\big[\series\big[\prod_{i=1}^9\ \frac{1}{1-x^i},\ (x,\  0,\  n)\big],\ x\big]\)
 \(\D f_{9}(n)=1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 73, 94, 123, 157, 201, 252, 318, 393, 488, 598, 732, 887\)
 
 
 | 
 |