- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
发表于 2019-6-19 19:48:53
|
显示全部楼层
对于N=5,根据楼上109# mathe提示重新修正了方程组:
我们记\(BC=2a,CD=CD'=2b,DJ=2c,DF=2d,\widehat{CD},\widehat{DI},\widehat{DF}\)对应的圆半径,圆弧度,圆周角分别\(R_0,2t_0,\theta_0,R_1,2t_1,\theta_1,R_2,2t_2,\theta_2\)
\(A\)到\(DD'\)的垂足记为\(H\)并令\(AH=x\),\(\angle ADH=t\)
我们有曲边三边形IFD的面积:\(S=2cd\sin(\frac{2\pi}{3}-t_1-t_2)+\frac{1}{2}(\frac{c}{\sin(t_1)})^2(2t_1-\sin(2t_1))+\frac{1}{2}(\frac{d}{\sin(t_2)})^2(2t_2-\sin(2t_2))+
\frac{1}{2}(\frac{2\pi}{3}-2(t_1+t_2)-\sin(\frac{2\pi}{3}-2(t_1+t_2))=\frac{\pi}{5}\)
曲边四边形BIDC的面积\(S=\frac{1}{2}(\frac{\pi}{3}+2(t_1-t_0))+c\sin(t_1)+\frac{x^2}{2}\frac{\cos(t)}{\sin(t)}-b(1-2a+x)\sin(\frac{\pi}{3}+t_0)-\frac{1}{2}(\frac{c}{\sin(t_1)})^2(2t_1-\sin(2t_1))+\frac{1}{2}(\frac{b}{\sin(t_0)})^2(2t_0-\sin(2t_0))=\frac{\pi}{5}\)
曲边五边形D'CDFF'的面积:\(S=2b^2\sin(\frac{2\pi}{3}+2t_0)+4[2b\sin(\frac{\pi}{3}+t_0)+d\cos(\frac{\pi}{2}-t_2-2t_0)]d\sin(\frac{\pi}{2}-t_2-2t_0)+\frac{1}{2}(4(t_2+t_0)-\sin(4t_2+4t_0))-(\frac{d}{\sin(t_2)})^2(2t_2-\sin(2t_2))-(\frac{b}{\sin(t_0)})^2(2t_0-\sin(2t_0))=\frac{\pi}{5}\)
在三角形CD'I中有:\(4b^2\sin(\frac{\pi}{3}+t_0)^2+x^2=1+4c^2-4c\cos(t_1)=1+4d^2-4d\cos(t_2)\)
对于D'点三条弧长半径倒数和为0有:\(\frac{\sin(t_0)}{b}+\frac{\sin(t_1)}{c}=\frac{\sin(t_2)}{d}\)
在三角形CDH中得到
\(x\cos(t)=2b\sin(\frac{\pi}{3}+t_0)\)
\(1-2a+x=2b\cos(\frac{\pi}{3}+t_0)\)
求解上面各个方程得到:
\(a =0 .445366231773976752082217753283, b =0 .125703193486028338536903388397, c =0 .400810373580294262765867719395, d = 0.455035788271461515582880131740\)
\( t = 0.0505122043270516188486948079902, t_0 = 0.0240799997132231123427553708159e, t_1 = 0.108762599328710501102437634466, t_2 =0 .211976978684874490113628985041\)
\(x = 0.0111569196689654896519789625679,\theta_0= 1.37968235416969^{\circ}, \theta_1= 6.23163791007230^{\circ}, \theta_2= 12.1453862319245^{\circ}\)
\( R_0 = 5.22073687273590, R_1 = 3.69246124938494, R_2 = 2.16278919549312\)
\(L=2a+4R_0t_0+4R_1t_1+4R_2t_2=4.83384664352739253889673598464\) |
|