- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19887
- 在线时间
- 小时
|
发表于 2019-7-11 21:16:41
|
显示全部楼层
很奇怪:
对于楼上146#坐标转换成143#的弦长后(与143#符号统一后)即:
[1, A, 0, 1 - 2*a]
[2, B, -x1, y1],
[3, I, x1, y1],
[4, C, -h, 2*x],
[5, H, h, 2*x],
[6, J, 0, 1],
[7, K, -x3, y3],
[8, P, x3, y3],
[9, D, -x4, y4],
[10, G, x4, y4],
[11, L, -x5, y5],
[12, O, x5, y5],
[13, E, -p, y6],
[14, F, p, y6],
[15, M, -x7, y7],
[16, N, x7, y7]
根据144# 数据(旋转90度后,布局和143#一致)
x1 = 0.40709986713448,
y1 = 0.32582693799745,
x3 = 0.83990883262206,
y3 = 0.54272751255436,
x4 = 0.43074531885496,
y4 = -0.13982224088985,
x5 = 0.98257552176460,
y5 = -0.18586377815225,
y6 = -0.48413074973536,
x7 = 0.45419827613861,
y7 = -0.89090062630616
其余参数:
R0 = 1.26807515257547, R1 = 2.95243485235118, R2 = 2.22274925977071, R3 = -2.25813639983660, R4 = 2.89223183684889, R5 = -14.5051169236080, R6 = 2.67449861992595, R7 = -34.3921095426366, R8 = 10.2022467574857, R9 = 9.776253372*10^12, a = 0.195525067449090, b = 0.155084180733908, c = 0.247935926033849, d = 0.242058598199665, h = 0.318181449956655, m = 0.198011951897411, n = 0.276873796158457, p = 0.235075742493475, u = 0.231017541128632, beta1 = 0.5382145846702483060951915, beta2 = 0.3414933539631494400590222, beta3 = 0.7932658356241914533069152, d = 0.2420585981996870372683824, e = 0.1013196777756024341605942, h = 0.3181814499566550000000000, n = 0.2768737961584595980024110, t0 = 0.12260582929224, t2 = 0.10911694634697, t3 = 0.04488378327096, t4 = 0.11023555500427, t6 = 0.10370943688338, x = 0.01433863302, z = 0.3850323421693771578837145, z1 = 0.2331245724851026872311345, alpha1 = 0.4198756913147786336845914, t5 = 0.01365160332952, t7 = -0.00683521819668, t8 = 0.02264572630074, theta = 0.5479979594814039071946316, u = 0.2310175411286317402650472, w = 0.3757222319230400163881143, y = 0.3937764655711446600034546, t1 = 0.08407578100475
代入143#的28个方程(将左项减去右项,理论为0)
得到
-2.74482602504*10^(-14), -2.4016594171251*10^(-12), -3.6893777913912*10^(-12), -2.0548953910*10^(-16), 0., -1.43084380173*10^(-14), -8.13987249352*10^(-14), -1.54929686033*10^(-14), -8.10162027856*10^(-15), 1.1*10^(-25), 1.062797521244*10^(-14), 1.031283963017*10^(-12), 5.6767702565*10^(-15), 1.5066627934*10^(-15), -5.8842214808*10^(-15), 4.0560778260*10^(-16), 2.200760991*10^(-16), 8.4718877556*10^(-15), 3.5748879151395*10^(-12), -3.6948220661324*10^(-12), 3.94421204790*10^(-15), 2.418974833212*10^(-14), 5.10074543328*10^(-14), 1.280928174052*10^(-13), -1.31312767095*10^(-14), -7.29434874565*10^(-15), -4.88730771072*10^(-14), 1.*10^(-14), 5.6705955218*10^(-15)
可以认为我143#的方程是正确的,并且mathe 给出的坐标也是正确(准确到12位)
但是:我直接求解143#得到
a = 0.1953662988355465590166726, alpha1 = 0.4193484969967193186331015, b = 0.1548223482206260003862638, beta1 = 0.5380404025457994667394824, beta2 = 0.3414907559923121161887345, beta3 = 0.7804392654386446442070010, c = 0.2481471255507734971805962, d = 0.2419565373319284707189872, e = 0.1011773988931060019917954, h = 0.3184815112068733435603822, m = 0.1982431166126087069250304, n = 0.2770433577131363813859600, p = 0.2346931985914641379958828, t0 = 0.1225718959021155608545727, t1 = 0.08431179687878592662763358, t2 = 0.1091819075434388507795040, t3 = 0.04509449675637060237142475, t4 = 0.1098313900364958981126947, t5 = 0.01338489929972743817899745, t6 = 0.1049233060225625283346378, t7 = -0.007127402075700182988149704, t8 = 0.02264056041368733926708800, theta = 0.5481381479511567156016647, u = 0.2312793361147615243312529, w = 0.3761257088948647501967653, x = 0.01459903867378488498267554, y = 0.3938572935956257668232283, z = 0.3830039465673149558613384, z1 = 0.2327648622426534307665223
并且反代回143#的28个方程(将左项减去右项,理论为0)
得到
-1.*10^(-25), 5.*10^(-25), 1.*10^(-25), -6.*10^(-26), 0., 0., -2.*10^(-25), 0., -4.*10^(-26), -1.*10^(-26), 1.*10^(-26), 0., -1.8*10^(-24), 2.*10^(-25), 0., 5.*10^(-26), 0., 1.6*10^(-24), -1.*10^(-25), 0., 9.*10^(-26), -1.2*10^(-25), 2.*10^(-25), 2.*10^(-25), -1.*10^(-25), -1.*10^(-26), 1.*10^(-25), 0., -1.*10^(-25)
精度明显比mathe 高出很多
我利用得到的精确解反过来算
x1 = 0.4073797579052223652840296, x3 = 0.8400944569950585337610475, y1 = 0.3258071465455285502905786, y3 = 0.5424401380117236012809872, x4 = 0.4312739987993303769629988, x5 = 0.9839351951253389529053724, y4 = -0.1388058480388596041110756, y5 = -0.1785259975288225657368824, y6 = -0.4831273868655789528677821, x7 = 0.4533673531691661799637804, y7 = -0.8907327589103144882491142
其中x7^2+y7^2-1=-0.0010531953(理论应为0),感觉这里的{x7,y7}似乎有点问题???
|
|