- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
发表于 2014-4-22 00:12:02
|
显示全部楼层
由于n为奇数时,消元出来的结果为关于\(u_1,u_2,u_3\)为对称式,因此较易算出
\(n=3\)时
\((a^2+b^2+r^2-x_0^2-y_0^2)^2-4a^2b^2-4a^2r^2+4a^2y_0^2-4b^2r^2+4b^2x_0^2=0\)
\(n=5\)时
\((a^2+b^2+r^2-x_0^2-y_0^2)^6-12(a^2+b^2+r^2-x_0^2-y_0^2)^4(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)-32(a^2+b^2+r^2-x_0^2-y_0^2)^3a^2b^2r^2+48(a^2+b^2+r^2-x_0^2-y_0^2)^2(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^2+(128(a^2+b^2+r^2-x_0^2-y_0^2))(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)a^2b^2r^2-64(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^3-256a^4b^4r^4=0\)
\(n=7\)时
\((a^2+b^2+r^2-x_0^2-y_0^2)^{12}-24(a^2+b^2+r^2-x_0^2-y_0^2)^{10}(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)-160(a^2+b^2+r^2-x_0^2-y_0^2)^9a^2b^2r^2+240(a^2+b^2+r^2-x_0^2-y_0^2)^8(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^2+2048(a^2+b^2+r^2-x_0^2-y_0^2)^7(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)a^2b^2r^2-1280(a^2+b^2+r^2-x_0^2-y_0^2)^6(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^3-3328(a^2+b^2+r^2-x_0^2-y_0^2)^6a^4b^4r^4-9216(a^2+b^2+r^2-x_0^2-y_0^2)^5(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^2a^2b^2r^2+3840(a^2+b^2+r^2-x_0^2-y_0^2)^4(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^4+27648(a^2+b^2+r^2-x_0^2-y_0^2)^4(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)a^4b^4r^4+16384(a^2+b^2+r^2-x_0^2-y_0^2)^3(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^3a^2b^2r^2-6144(a^2+b^2+r^2-x_0^2-y_0^2)^2(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^5-24576(a^2+b^2+r^2-x_0^2-y_0^2)^3a^6b^6r^6-61440(a^2+b^2+r^2-x_0^2-y_0^2)^2(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^2a^4b^4r^4-(8192(a^2+b^2+r^2-x_0^2-y_0^2))(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^4a^2b^2r^2+4096(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^6+(98304(a^2+b^2+r^2-x_0^2-y_0^2))(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)a^6b^6r^6+16384(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^3a^4b^4r^4-65536a^8b^8r^8=0\)
\(n=9\)时
\(-50331648a^{12}b^{12}r^{12}-480(a^2+b^2+r^2-x_0^2-y_0^2)^{15}a^2b^2r^2-19200(a^2+b^2+r^2-x_0^2-y_0^2)^{12}a^4b^4r^4-417792(a^2+b^2+r^2-x_0^2-y_0^2)^9a^6b^6r^6-4718592(a^2+b^2+r^2-x_0^2-y_0^2)^6a^8b^8r^8-25165824(a^2+b^2+r^2-x_0^2-y_0^2)^3a^{10}b^{10}r^{10}-3145728(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^6a^4b^4r^4-16777216(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^3a^8b^8r^8+(1572864(a^2+b^2+r^2-x_0^2-y_0^2))(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^7a^2b^2r^2+3342336(a^2+b^2+r^2-x_0^2-y_0^2)^6(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^3a^4b^4r^4+1802240(a^2+b^2+r^2-x_0^2-y_0^2)^5(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^5a^2b^2r^2-16515072(a^2+b^2+r^2-x_0^2-y_0^2)^5(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^2a^6b^6r^6-1376256(a^2+b^2+r^2-x_0^2-y_0^2)^4(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^4a^4b^4r^4-2228224(a^2+b^2+r^2-x_0^2-y_0^2)^3(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^6a^2b^2r^2+36700160(a^2+b^2+r^2-x_0^2-y_0^2)^4(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)a^8b^8r^8+12582912(a^2+b^2+r^2-x_0^2-y_0^2)^3(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^3a^6b^6r^6-1572864(a^2+b^2+r^2-x_0^2-y_0^2)^2(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^5a^4b^4r^4-67108864(a^2+b^2+r^2-x_0^2-y_0^2)^2(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^2a^8b^8r^8+9856(a^2+b^2+r^2-x_0^2-y_0^2)^{13}(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)a^2b^2r^2-83456(a^2+b^2+r^2-x_0^2-y_0^2)^{11}(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^2a^2b^2r^2+288768(a^2+b^2+r^2-x_0^2-y_0^2)^{10}(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)a^4b^4r^4+378880(a^2+b^2+r^2-x_0^2-y_0^2)^9(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^3a^2b^2r^2-1560576(a^2+b^2+r^2-x_0^2-y_0^2)^8(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^2a^4b^4r^4-1024000(a^2+b^2+r^2-x_0^2-y_0^2)^7(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^4a^2b^2r^2+4718592(a^2+b^2+r^2-x_0^2-y_0^2)^7(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)a^6b^6r^6+(a^2+b^2+r^2-x_0^2-y_0^2)^18-262144(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^9-36(a^2+b^2+r^2-x_0^2-y_0^2)^{16}(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)+576(a^2+b^2+r^2-x_0^2-y_0^2)^{14}(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^2-5376(a^2+b^2+r^2-x_0^2-y_0^2)^{12}(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^3+32256(a^2+b^2+r^2-x_0^2-y_0^2)^{10}(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^4-129024(a^2+b^2+r^2-x_0^2-y_0^2)^8(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^5+344064(a^2+b^2+r^2-x_0^2-y_0^2)^6(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^6-589824(a^2+b^2+r^2-x_0^2-y_0^2)^4(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^7+589824(a^2+b^2+r^2-x_0^2-y_0^2)^2(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^8+(100663296(a^2+b^2+r^2-x_0^2-y_0^2))(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)a^{10}b^{10}r^{10}+(18874368(a^2+b^2+r^2-x_0^2-y_0^2))(a^2b^2+a^2r^2-a^2y_0^2+b^2r^2-b^2x_0^2)^4a^6b^6r^6=0\) |
|