- 注册时间
- 2008-2-6
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 51573
- 在线时间
- 小时
|
楼主 |
发表于 2008-6-21 19:29:55
|
显示全部楼层
04-1.[★★]从29x29的方格纸上剪下了99个正方形,它们都由4个方格组成。证明:从这张方格纸上还可以再剪出一个这样的正方形。
04-2[★★] 在平面上给定一个半径为1的圆和5条与圆相交的直线。平面上有一点x与圆心的距离为11.1。证明:如果作x关于第一条直线的对称点x1,再作x1关于第二条直线的对称点x2,如此下去,最终得到x5,则x5不可能位于给定的圆内。
04-3. [★★] 自然数y是由重排自然数x的各位数字后得到的。今知x+y=10^200,证明:x是50的倍数。
04-4[★★] 在直线上给定若干条线段,其中任何两条线段都相交。证明:必有一个点属于所有这些线段。
04-5[★★★] ΔABC的3个顶点都位于坐标平面的整点之上(两个坐标都为整数的点称为整点,又称格点)。现知|AB|>|AC|。证明:|AB|-|AC|>1/p, p是ΔABC的周长。
04-6[★★] 平面被染为(1)两种;(2)3种;(3)100种不同颜色。证明:从中可以找出各个顶点都为同一颜色的矩形。
04-7[★★]. 黑板上写有1,2,...,n。每分钟小李擦掉两个数a,b,然后写上a+b+ab。显然n-1分钟后,黑板上只剩下一个数。问最后剩下的数和操作顺序有关吗?对怎样的n最后的得数是奇数?
04-8.[★★★] 设a(1)=3,且对n≥1有a(n+1)=(3a(n)^2+1)/2 – a(n),如果 n是3的方幂, 证明n∣a(n) 。
04-9.[★★★] 一个domino是一个1x2或2x1的矩形, 平面某一区域的domino拼铺是全用domino无重叠地覆盖这一区域。问一个3xN的矩形有多少种domino拼铺?
04-10.[ ★★★★] 设 S={1,2,…,n}, T是S的所有非空子集构成的集合。若函数f: T→S满足:对任意A,B∈T,如果A是B的真子集,则有f(A)≠f(B),则称f为garish的。问有多少garish的函数,并证明你的结论。[shshsh_0510 于126#解决]
05-1.[★]对于三角形ABC,其内切圆与外接圆半径分别为r和R、圆心分别为P与O,求P与O的距离。
05-2[★★]注意到 959^2=919681,919+681=40^2; 960^=921600, 921+600=39^2; 961^2=923521,923+521=38^2. 试对于这种情况建立一个一般的规律。
05-3[★★] 解函数方程: f(x+2f(y))=f(x)+y+f(y) [由 mathe 解决]
05-4[★★]如果圆上有16个点,问以这些点为顶点最多可以有多少个锐角三角形?
05-5[★★★]设S1,S2,S3,…,是一列两两不交的整数集,每个集合中恰有2个元素,并且,Sn中的元素的和恰好是n。证明:有无穷多个n,使得Sn中存在一个大于13n/7的元素。
05-6[★★★]一个2n 位的数字的牌照号码,如果前n位数字之和等于后n位数字之和,我们就称这2n位数字牌照号为幸运数。牌照号可以以0开头。
1) 计算6位幸运数的个数;
2) 计算8位幸运数的个数;
3) 计算10位幸运数的个数;
4) 计算2进制的2n位幸运数的个数;
5) 计算m进制的2n位幸运数的个数。
05-7[★★★]考虑平面中 3n个不同的点组成的集合M,任两点之间的距离不超过1。证明:
1) 对M的任何四点中,至少有两个点,其距离不超过√2 / 2。
2) 如果n=2,对于任何ε>0,存在六个点的构型,使其12个距离属于区间(1-ε,1),但不存在这样的构形,使至少13个距离属于(√2/2,1)。
3) 存在一个半径不超过√3/3的圆,含了所有的点。
4) M中存在两点,其距离不超过4/(3√n - √3)。 |
|