找回密码
 欢迎注册
查看: 31607|回复: 5

[原创] 嵌套三角形的心

[复制链接]
发表于 2015-8-11 18:20:29 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
设 由锐角 \(\triangle ABC\) 的垂心\(P\) 分别连接三个顶点交边于\(A_1,B_1,C_1\),然后依次连接\(B_1C_1,A_1C_1,A_1B_1\)分别交\(AP,BP,CP\)于\(A_2,B_2,C_2\),同样作法得到\(A_k,B_k,C_k\),\(k=1..5\),最终得到一个嵌套\(\triangle A_kB_kC_k\) .

2015081101.png

2015081102.png

1. 若已知\(\triangle ABC\) 各边长依次为\(a,b,c\),求\(\triangle A_kB_kC_k\) 各边长依次为\(a_k,b_k,c_k\) ?


2.请给出点\(P\)在\(\triangle A_kB_kC_k\)中所具备的性质?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2015-8-11 19:09:03 | 显示全部楼层
1.由\(P\)为\(\triangle ABC\)的垂心.我们可以得到:

   \(a_1=R\sin(2A), b_1=R\sin(2B), c_1=R\sin(2C)\)


2.我们容易得到\(P\)为\(\triangle A_1B_1C_1\)的内心.





3.我们容易得到\(P\)为\(\triangle A_2B_2C_2\)的?心.


4.我们得到\(P\)为\(\triangle A_3B_3C_3\)的 ? 心.


5.我们得到\(P\)为\(\triangle A_4B_4C_4\)的 ? 心.


6.我们得到\(P\)为\(\triangle A_5B_5C_5\)的 ? 心.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2015-8-12 08:09:48 | 显示全部楼层
本帖最后由 葡萄糖 于 2015-8-12 13:39 编辑
数学星空 发表于 2015-8-11 19:09
1.由\(P\)为\(\triangle ABC\)的垂心.我们可以得到:

  \(a_1=R\sin(2A)\), \(b_1=R\sin(2B)\), \(c_1=R\sin(2C)\) ...
数学星空 发表于 2015-8-11 19:09
3.我们容易得到\(P\)为\(△A_2B_2C_2\)的\(\color{red}{外心}\). ...

\(P\)\(\color{red}{不是}\)\(△A_2B_2C_2\)的\(\color{red}{外心}\). ...


\(有点问题!\)

迭代

迭代

bbs.cnool.net/cthread-102993804.html


点评

是的,我已修正,多谢!  发表于 2015-8-12 12:26

评分

参与人数 1贡献 +12 经验 +12 收起 理由
数学星空 + 12 + 12

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2015-8-13 18:27:53 | 显示全部楼层
当\(k=1\)时

\(-a^2(a^2-b^2-c^2)^2+4a_1^2b^2c^2=0\)

\(-b^2(a^2-b^2+c^2)^2+4b_1^2a^2c^2=0\)

\(-c^2(a^2+b^2-c^2)^2+4c_1^2b^2a^2=0\)


当\(k=2\)时

\(-(a^6-3a^4b^2-3a^4c^2+3a^2b^4+3a^2b^2c^2+3a^2c^4-b^6+b^4c^2+b^2c^4-c^6)(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2(a^2+b^2-c^2)^2+4(a^4-a^2b^2-2a^2c^2-b^2c^2+c^4)^2(a^4-2a^2b^2-a^2c^2+b^4-b^2c^2)^2a_2^2=0\)

\((a^6-3a^4b^2-a^4c^2+3a^2b^4-3a^2b^2c^2-a^2c^4-b^6+3b^4c^2-3b^2c^4+c^6)(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2(a^2+b^2-c^2)^2+4(a^4-2a^2b^2-a^2c^2+b^4-b^2c^2)^2(a^2b^2+a^2c^2-b^4+2b^2c^2-c^4)^2b_2^2=0\)

\((a^6-a^4b^2-3a^4c^2-a^2b^4-3a^2b^2c^2+3a^2c^4+b^6-3b^4c^2+3b^2c^4-c^6)(a^2+b^2-c^2)^2(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2+4(a^4-a^2b^2-2a^2c^2-b^2c^2+c^4)^2(a^2b^2+a^2c^2-b^4+2b^2c^2-c^4)^2c_2^2=0\)

当\(k=3\)时

\(-(a^6-5a^4b^2-5a^4c^2+7a^2b^4+11a^2b^2c^2+7a^2c^4-3b^6+3b^4c^2+3b^2c^4-3c^6)(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2(a^2+b^2-c^2)^2+4(a^4-3a^2b^2-2a^2c^2+2b^4-3b^2c^2+c^4)^2(a^4-2a^2b^2-3a^2c^2+b^4-3b^2c^2+2c^4)^2a_3^2=0\)

\((3a^6-7a^4b^2-3a^4c^2+5a^2b^4-11a^2b^2c^2-3a^2c^4-b^6+5b^4c^2-7b^2c^4+3c^6)(a^2+b^2-c^2)^2(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2+4(2a^4-3a^2b^2-3a^2c^2+b^4-2b^2c^2+c^4)^2(a^4-2a^2b^2-3a^2c^2+b^4-3b^2c^2+2c^4)^2b_3^2=0\)

\((3a^6-3a^4b^2-7a^4c^2-3a^2b^4-11a^2b^2c^2+5a^2c^4+3b^6-7b^4c^2+5b^2c^4-c^6)(a^2+b^2-c^2)^2(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2+4(a^4-3a^2b^2-2a^2c^2+2b^4-3b^2c^2+c^4)^2(2a^4-3a^2b^2-3a^2c^2+b^4-2b^2c^2+c^4)^2c_3^2=0\)

当\(k=4\)时

\(-(9a^6-33a^4b^2-33a^4c^2+39a^2b^4+43a^2b^2c^2+39a^2c^4-15b^6+15b^4c^2+15b^2c^4-15c^6)(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2(a^2+b^2-c^2)^2+4(3a^4-6a^2b^2-5a^2c^2+3b^4-5b^2c^2+2c^4)^2(3a^4-5a^2b^2-6a^2c^2+2b^4-5b^2c^2+3c^4)^2a_4^2=0\)

\((15a^6-39a^4b^2-15a^4c^2+33a^2b^4-43a^2b^2c^2-15a^2c^4-9b^6+33b^4c^2-39b^2c^4+15c^6)(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2(a^2+b^2-c^2)^2+4(3a^4-6a^2b^2-5a^2c^2+3b^4-5b^2c^2+2c^4)^2(2a^4-5a^2b^2-5a^2c^2+3b^4-6b^2c^2+3c^4)^2b_4^2=0\)

\((15a^6-15a^4b^2-39a^4c^2-15a^2b^4-43a^2b^2c^2+33a^2c^4+15b^6-39b^4c^2+33b^2c^4-9c^6)(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2(a^2+b^2-c^2)^2+4(2a^4-5a^2b^2-5a^2c^2+3b^4-6b^2c^2+3c^4)^2(3a^4-5a^2b^2-6a^2c^2+2b^4-5b^2c^2+3c^4)^2c_4^2=0\)

当\(k=5\)时

\(-(25a^6-105a^4b^2-105a^4c^2+135a^2b^4+171a^2b^2c^2+135a^2c^4-55b^6+55b^4c^2+55b^2c^4-55c^6)(a^2+b^2-c^2)^2(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2+4(5a^4-11a^2b^2-10a^2c^2+6b^4-11b^2c^2+5c^4)^2(5a^4-10a^2b^2-11a^2c^2+5b^4-11b^2c^2+6c^4)^2a_5^2=0\)

\((55a^6-135a^4b^2-55a^4c^2+105a^2b^4-171a^2b^2c^2-55a^2c^4-25b^6+105b^4c^2-135b^2c^4+55c^6)(a^2+b^2-c^2)^2(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2+4(5a^4-10a^2b^2-11a^2c^2+5b^4-11b^2c^2+6c^4)^2(6a^4-11a^2b^2-11a^2c^2+5b^4-10b^2c^2+5c^4)^2b_5^2=0\)

\((55a^6-55a^4b^2-135a^4c^2-55a^2b^4-171a^2b^2c^2+105a^2c^4+55b^6-135b^4c^2+105b^2c^4-25c^6)(a^2+b^2-c^2)^2(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2+4(5a^4-11a^2b^2-10a^2c^2+6b^4-11b^2c^2+5c^4)^2(6a^4-11a^2b^2-11a^2c^2+5b^4-10b^2c^2+5c^4)^2c_5^2=0\)

当\(k=6\)时

\(-(121a^6-473a^4b^2-473a^4c^2+583a^2b^4+683a^2b^2c^2+583a^2c^4-231b^6+231b^4c^2+231b^2c^4-231c^6)(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2(a^2+b^2-c^2)^2+4(11a^4-22a^2b^2-21a^2c^2+11b^4-21b^2c^2+10c^4)^2(11a^4-21a^2b^2-22a^2c^2+10b^4-21b^2c^2+11c^4)^2a_6^2=0\)

\((231a^6-583a^4b^2-231a^4c^2+473a^2b^4-683a^2b^2c^2-231a^2c^4-121b^6+473b^4c^2-583b^2c^4+231c^6)(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2(a^2+b^2-c^2)^2+4(11a^4-22a^2b^2-21a^2c^2+11b^4-21b^2c^2+10c^4)^2(10a^4-21a^2b^2-21a^2c^2+11b^4-22b^2c^2+11c^4)^2b_6^2=0\)

\((231a^6-231a^4b^2-583a^4c^2-231a^2b^4-683a^2b^2c^2+473a^2c^4+231b^6-583b^4c^2+473b^2c^4-121c^6)(a^2-b^2+c^2)^2(a^2-b^2-c^2)^2(a^2+b^2-c^2)^2+4(11a^4-21a^2b^2-22a^2c^2+10b^4-21b^2c^2+11c^4)^2(10a^4-21a^2b^2-21a^2c^2+11b^4-22b^2c^2+11c^4)^2c_6^2=0\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2015-8-13 21:08:57 | 显示全部楼层

\[\left\{ \begin{array}{l}
{a_k} = {B_k}{C_k} \\
{b_k} = {C_k}{A_k} \\
{c_k} = {A_k}{B_k} \\
\end{array} \right.\]
\[\left\{ \begin{array}{l}
{A_k}  =  {x_{k - 1}}{B_{k - 1}} + \left( {1 - {x_{k - 1}}} \right){C_{k - 1}} \\
{B_k}  =  {y_{k - 1}}{C_{k - 1}} + \left( {1 - {y_{k - 1}}} \right){A_{k - 1}} \\
{C_k} = {z_{k - 1}}{A_{k - 1}} + \left( {1 - {z_{k - 1}}} \right){B_{k - 1}} \\
\end{array} \right.\]
那么,有递推式
\[\left\{ \begin{array}{l}
{x_k}  = \frac{{a_{k - 1}^2 + b_{k - 1}^2 - c_{k - 1}^2}}{{2a_{k - 1}^2}} \\
{y_k}  = \frac{{b_{k - 1}^2 + c_{k - 1}^2 - a_{k - 1}^2}}{{2b_{k - 1}^2}} \\
{z_k}  = \frac{{c_{k - 1}^2 + a_{k - 1}^2 - b_{k - 1}^2}}{{2c_{k - 1}^2}} \\
\end{array} \right.\]
\[\left\{ \begin{array}{l}
{b_k}^2 = \left( {1 - {x_{k - 1}} - {y_{k - 1}}} \right)\left\{ {\left( {1 - {y_{k - 1}}} \right)b_{k - 1}^2 - {x_{k - 1}}a_{k - 1}^2} \right\} + {x_{k - 1}}\left( {1 - {y_{k - 1}}} \right)c_{k - 1}^2 \\
{c_k}^2 = \left( {1 - {y_{k - 1}} - {z_{k - 1}}} \right)\left\{ {\left( {1 - {z_{k - 1}}} \right)c_{k - 1}^2 - {y_{k - 1}}b_{k - 1}^2} \right\} + {y_{k - 1}}\left( {1 - {z_{k - 1}}} \right)a_{k - 1}^2 \\
{a_k}^2 = \left( {1 - {z_{k - 1}} - {x_{k - 1}}} \right)\left\{ {\left( {1 - {x_{k - 1}}} \right)a_{k - 1}^2 - {z_{k - 1}}c_{k - 1}^2} \right\} + {z_{k - 1}}\left( {1 - {x_{k - 1}}} \right)b_{k - 1}^2 \\
\end{array} \right.\]

\[P{\rm{ = }}\frac{{\left( {{b^2} + {c^2} - {a^2}} \right)\left( {{c^2} + {a^2} - {b^2}} \right)\left( {{a^2} + {b^2} - {c^2}} \right)}}{{16{S^2}}}\left\{ {\frac{A}{{\left( {{b^2} + {c^2} - {a^2}} \right)}} + \frac{B}{{\left( {{c^2} + {a^2} - {b^2}} \right)}} + \frac{C}{{\left( {{a^2} + {b^2} - {c^2}} \right)}}} \right\}\]
各心的重心坐标公式有专门的收集,慢慢地检查,也许能发现点巧合
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-22 11:04 , Processed in 0.038825 second(s), 24 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表