- 注册时间
- 2012-4-20
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 3061
- 在线时间
- 小时
|
发表于 2017-9-1 23:47:37
|
显示全部楼层
设 四点电荷分别为1、2、3、4,各点受力为
\[\left\{ \begin{array}{l}
\mathop {{f_A}}\limits^ \to = \frac{2}{{A{B^3}}}\mathop {BA}\limits^ \to + \frac{3}{{A{C^3}}}\mathop {CA}\limits^ \to + \frac{4}{{A{D^3}}}\mathop {DA}\limits^ \to \\
\mathop {{f_B}}\limits^ \to = \frac{2}{{A{B^3}}}\mathop {AB}\limits^ \to + \frac{6}{{B{C^3}}}\mathop {CB}\limits^ \to + \frac{8}{{B{D^3}}}\mathop {DB}\limits^ \to \\
\mathop {{f_C}}\limits^ \to = \frac{3}{{A{C^3}}}\mathop {CA}\limits^ \to + \frac{6}{{B{C^3}}}\mathop {BC}\limits^ \to + \frac{{12}}{{C{D^3}}}\mathop {DC}\limits^ \to \\
\mathop {{f_D}}\limits^ \to = \frac{2}{{A{D^3}}}\mathop {DA}\limits^ \to + \frac{8}{{B{D^3}}}\mathop {BD}\limits^ \to + \frac{{12}}{{C{D^3}}}\mathop {CD}\limits^ \to \\
\end{array} \right.\]
又设外接球球心坐标$$O = \alpha A + \beta B + \gamma C + \delta D\left( {\alpha + \beta + \gamma + \delta = 1} \right)$$
\[\left\{ \begin{array}{l}
\mathop {OA}\limits^ \to = \beta \mathop {BA}\limits^ \to + \gamma \mathop {CA}\limits^ \to + \delta \mathop {DA}\limits^ \to \\
\mathop {OB}\limits^ \to = \alpha \mathop {AB}\limits^ \to + \gamma \mathop {CB}\limits^ \to + \delta \mathop {DB}\limits^ \to \\
\mathop {OC}\limits^ \to = \alpha \mathop {AC}\limits^ \to + \beta \mathop {BC}\limits^ \to + \delta \mathop {DC}\limits^ \to \\
\mathop {OD}\limits^ \to = \alpha \mathop {AD}\limits^ \to + \beta \mathop {BD}\limits^ \to + \gamma \mathop {CD}\limits^ \to \\
\end{array} \right.\]
由对应的向量方向一致知有方程:
\[\left\{ \begin{array}{l}
\frac{2}{{A{B^3}}} = \lambda \beta ,\frac{3}{{A{C^3}}} = \lambda \gamma ,\frac{4}{{A{D^3}}} = \lambda \delta \\
\frac{2}{{A{B^3}}} = \mu \alpha ,\frac{6}{{B{C^3}}} = \mu \gamma ,\frac{8}{{B{D^3}}} = \mu \delta \\
\frac{3}{{A{C^3}}} = v\alpha ,\frac{6}{{B{C^3}}} = v\beta ,\frac{{12}}{{C{D^3}}} = v\delta \\
\frac{2}{{A{D^3}}} = \eta \alpha ,\frac{8}{{B{D^3}}} = \eta \beta ,\frac{{12}}{{C{D^3}}} = \eta \gamma \\
\end{array} \right.\]
整理一下,即是
\[\left\{ \begin{array}{l}
\frac{2}{{A{B^3}}} = \lambda \beta = \mu \alpha \\
\frac{3}{{A{C^3}}} = \lambda \gamma = v\alpha \\
\frac{4}{{A{D^3}}} = \lambda \delta = \eta \alpha \\
\frac{6}{{B{C^3}}} = \mu \gamma = v\beta \\
\frac{8}{{B{D^3}}} = \mu \delta = \eta \beta \\
\frac{{12}}{{C{D^3}}} = v\delta = \eta \gamma \\
\end{array} \right.\]
求解得到
\[\lambda \to \frac{{v\alpha }}{\gamma },\mu \to \frac{{v\beta }}{\gamma },\eta \to \frac{{v\delta }}{\gamma }\]
以及
\[\left\{ \begin{array}{l}
\frac{2}{{A{B^3}}} = \frac{{v\alpha \beta }}{\gamma } \\
\frac{3}{{A{C^3}}} = v\alpha \\
\frac{4}{{A{D^3}}} = \frac{{v\alpha \delta }}{\gamma } \\
\frac{6}{{B{C^3}}} = v\beta \\
\frac{8}{{B{D^3}}} = \frac{{v\beta \delta }}{\gamma } \\
\frac{{12}}{{C{D^3}}} = v\delta \\
\end{array} \right.\]
再由距离式:
\[\left\{ \begin{array}{l}
{R^2} = O{A^2} = \beta A{B^2} + \gamma A{C^2} + \delta A{D^2} - T \\
{R^2} = O{B^2} = \alpha A{B^2} + \gamma B{C^2} + \delta B{D^2} - T \\
{R^2} = O{C^2} = \alpha A{C^2} + \beta B{C^2} + \delta C{D^2} - T \\
{R^2} = O{D^2} = \alpha A{D^2} + \beta B{D^2} + \gamma C{D^2} - T \\
\alpha + \beta + \gamma + \delta = 1 \\
T = \alpha \beta A{B^2} + \alpha \gamma A{C^2} + \alpha \delta A{D^2} + \beta \gamma B{C^2} + \gamma \delta C{D^2} \\
\end{array} \right.\]
这里的T是等于$R^2$的(前四式分别乘$\alpha ,\beta ,\gamma ,\delta$相加得到),将之前的式子代入,得到
\[\left\{ \begin{array}{l}
2{R^2}{v^{2/3}}{\alpha ^{2/3}} = {3^{2/3}}\gamma + {2^{1/3}}{\gamma ^{2/3}}\left( {{2^{1/3}}{\beta ^{1/3}} + 2{\delta ^{1/3}}} \right) \\
2{R^2}{v^{2/3}}{\beta ^{2/3}} = {6^{2/3}}\gamma + {\gamma ^{2/3}}\left( {{2^{2/3}}{\alpha ^{1/3}} + 4{\delta ^{1/3}}} \right) \\
2{R^2}{v^{2/3}} = {3^{2/3}}\left( {{\alpha ^{1/3}} + {2^{2/3}}{\beta ^{1/3}} + {{22}^{1/3}}{\delta ^{1/3}}} \right) \\
2{R^2}{v^{2/3}}{\delta ^{2/3}} = 2\left( {{2^{1/3}}{\alpha ^{1/3}} + 2{\beta ^{1/3}}} \right){\gamma ^{2/3}} + {22^{1/3}}{3^{2/3}}\gamma \\
\alpha + \beta + \gamma + \delta = 1 \\
\end{array} \right.\]
再设定$R = 1$ ,解得(MATHEMATICA可以得到一个很长的表达式)
AB-> 1.4256763368739924361355721322175095867108448151334
AC-> 1.5122540621851561716385500548056689285120031585503
AD-> 1.6031196050911390297710575855509971279275045671404
BC-> 1.6047533133070553394182617889156565156727700850659
BD-> 1.7011767812216463924741294636051178176363249969131
CD-> 1.8044849531123852919849281349929552833395951480575
|
|