- 注册时间
- 2007-12-27
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 40149
- 在线时间
- 小时
|
发表于 2019-12-16 08:31:29
|
显示全部楼层
但是并不是所有的最优解都具有明显的对称性,比如19棵树的部分最优解:
ACKLBCENCFQRLNPSBDKMJMNRHMOSGMPQFKNOJLOQDOPREKQSAIRSFILMDHNQGHLRIJKPEGIODGJSEFHP
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
[+1*t^2+1/2*t+1/4](复数解)
-1*v10-1*t
+1*v0+2*v10-1
+1*v4+1*v10-1
+1*v3-2*v10
+1*v5+2*v10-2
+1*v7+2*v10-1
+1*v8+2*v10-1
+1*v9-1*v10-1/2
+1*v11-1/2
+1*v1-2*v10+1
+1*v2-2/3*v10-1/3
+1*v6+4/3*v10-1/3
A[+1,v0,0];
B(v6,v2)
C[+1,v1,0];
D(v7,v2)
E(v8,v3)
F(+1,+0)
G(v4,v9)
H(v4,v10)
I(+1,+1)
J(v5,+1)
K[+1,+0,0];
L[+0,+1,0];
M(+1,v2)
N(+0,+0)
O(v5,+0)
P(+0,+1)
Q(v5,v3)
R(v4,v11)
S(+0,v3)
ACKLBCENCIRSLMQRBDKMHMNSFMOPGKNQJNPRDLNOEKORDPQSAGOSFJLSHIKPHJOQEGLPGIJMEFIQDFHR
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
+1*v7*v9-1*v9-1/2*v11+1/2
+1*v2-3*v9
+1*v4+1*v11-1
+1*v1+12*v9+6*v11-5
+1*v3-6*v9-4*v11+3
+1*v0*v9-4*v9-2*v11+2
+1*v9*v10-3/2*v9-1/2*v11+1/2
+1*v0*v11-1*v0+6*v9+2*v11-2
+1*v7*v11-1*v7+3/2*v9+1/2*v11-1/2
+1*v9*v11-1/2*v9
+1*v10*v11+3/2*v9-1*v10
+1*v11^2-3/2*v11+1/2(v11=1/2)
+1*v5-3/2*v9
+1*v6-2*v9-2*v11+1
+1*v8-3*v9-1*v11+1
+1*v9^2-1/2*v9-1/6*v11+1/6 (v9^2 - 1/2*v9 + 1/12=0,复数解)
A[+1,v0,0];
B(+1,+0)
C[+1,v1,0];
D(v2,+0)
E(v4,v3)
F(v5,v7)
G(v4,+1)
H(v8,v6)
I(v9,v6)
J(v5,v10)
K[+1,+0,0];
L[+0,+1,0];
M(+0,+0)
N(v2,+1)
O(v2,v3)
P(v4,v6)
Q(+0,+1)
R(+0,v3)
S(v5,v11)
AHISAJKRDEKQEFIPFGMNGKLSGIQRFHOQGJOPEJLNHKNPEMOSDNORHLMRBDFLCDMPBJMQCILOCNQSBPRS
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
[+1*t^3+3*t^2+2*t-1]
-1*v11-1*t^2-3*t-2
-1*v10-1*t
+1*v1+1
+1*v0-2*v10+1*v11+3
+1*v2-1*v10+1
+1*v3+1*v10-1*v11-2
+1*v4+1*v10-1*v11-2
+1*v5+1*v10-2
+1*v9+2*v10-1*v11-3
+1*v6+1*v10-1/2*v11-2
+1*v7+1/2*v10-1/2*v11-1
+1*v8-1*v11
A(v6,v7)
B(v8,+1)
C(v3,v2)
D(+1,v2)
E(+0,+0)
F[+1,v0,0];
G[+1,v1,0];
H(v5,v4)
I(v9,v10)
J(+0,+1)
K(v5,v11)
L(+0,v4)
M[+1,+0,0];
N[+0,+1,0];
O(+1,+0)
P(v5,v2)
Q(v3,+1)
R(+1,v4)
S(v3,+0)
AOPQANRSFGJKHILMCGMOBFLOCIJNBHKNCEKPBDJQCDLSBEMRGIPSFHQRJLPRKMQSDFNPEHOSDIOREGNQ
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
ACBDEIHGFLMJKONRSPQ 01 00 03 02 07 06 05 04 11 10 09 08 13 12 14 15 18 19 16 17
ACBEDGFIHKJMLNOQPSR 00 01 02 03 05 04 07 06 09 08 11 10 13 12 15 14 19 18 17 16
ABCEDHIFGMLKJONSRQP 01 00 03 02 06 07 04 05 10 11 08 09 12 13 15 14 17 16 19 18
[+1*t^2+3*t+1]
-1*v11-1*t
+1*v2-2*v11
+1*v3+1*v11-1
+1*v1+1
+1*v10-2
+1*v4+1*v11-1
+1*v5-2*v11
+1*v6+4*v11-2
+1*v7-1*v11
+1*v8+4*v11-2
+1*v9-2
+1*v0+1*v11-1
A[+1,v0,0];
B(v2,v6)
C(+0,+0)
D(v4,v3)
E(+1,+0)
F(v2,v3)
G(+0,+1)
H(+1,v7)
I(v4,+1)
J(v8,v5)
K(v9,+0)
L(v2,v5)
M(+0,v10)
N(v11,v3)
O[+0,+1,0];
P[+1,+0,0];
Q[+1,v1,0];
R(v4,v5)
S(+1,+1)
去除无穷远点得
AOPQANRSHIJMGKLMCFMRDEMSFJLNBEKNBFHOEGIODFGQBCGPCINQDHNPCKOSDLORBJQSHKQRILPSEJPR
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
[+1*t^2+1*t+1/3](复数解)
-1*v11-1*t
+1*v1+3/2*v11
+1*v2-1/2
+1*v3+1*v11-1
+1*v5-3/2*v11
+1*v6-3*v11+1
+1*v4+2*v11-2
+1*v7-2*v11
+1*v8+3/2*v11-3/2
+1*v0-3*v11+3/2
+1*v9+6/7*v11-8/7
+1*v10-3/7*v11-3/7
A[+1,v0,0];
B(+0,+1)
C(v3,v2)
D(+1,+0)
E(v4,v6)
F(+0,+0)
G(v4,+0)
H(+0,v5)
I(v4,v2)
J(v7,+1)
K(v3,v5)
L(+1,v8)
M(v9,v10)
N(v11,v2)
O[+0,+1,0];
P[+1,v1,0];
Q[+1,+0,0];
R(+1,v5)
S(v3,+1)
BCDEBIOSBHNRAHJSGIKRFGHMEFJNEGLOHLPQJKMPKLNSAKOQCGPSCJQRDFQSDLMREIMQDINPFOPRCMNO
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
[+1*t^3+1*t^2+2*t+1]
A(+0,+0)
B[+1,t^2-t-1,0];
C(-t^2-t-2,t^2-t)
D(2*t^2+t+3,-t^2-3*t-1)
E(t^2,1-t^2)
F(2*t^2+t+3,1-t)
G(-t^2-t-2,1-t^2)
H(+0,+1)
I[+1,t^2+t,0];
J(+0,-t)
K(+1,+0)
L(+1,1-t^2)
M(t,t^2-t)
N(+1,t^2-t)
O[+1,+0,0];
P(-t^2-t-2,1-t)
Q(2*t^2+t+3,+0)
R(-3*t^2 - t - 5,1-t)
S[+0,+1,0];
BEGOBINSBLPRAIKPDGLMFHJMCJLNEHKNDHIOCDERACMQEFPQKLOQGHQSIJQRDJPSCFOSFGNRKMRSMNOP
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
[+1*t^3+3*t^2+2*t-1]
A(t^2-1,-2*t^2-3*t+1)
B[+1,t^2+2*t-1,0];
C(+0,+1)
D(+1,+0)
E(t^2+t,-t^2-t+1)
F((t+1)^2,+1)
G((t+1)^2,-t^2-2*t+1)
H(t^2+t,-t^2-2*t+1)
I[+1,-t^2-t,0];
J(+0,+0)
K(t^2+t,-t^2-2*t)
L(+0,-t)
M(-t-1,-t^2-2*t)
N[+0,+1,0];
O(-t-1,+1)
P(-t-1,+0)
Q(t^2+t-1,-t^2-2*t+1)
R((t+1)^2,-t^2-2*t)
S[+1,+0,0];
CDEFFIJRFHKSGJPSGKQRCJNQCKOPDHOREINSGHIMEJMODKMNDILQEHLPGLNOFMPQCLRSBOQSANPRABLM
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
BACEDFGIHKJLMONQPSR 00 02 01 04 03 06 05 08 07 09 11 10 13 12 14 15 16 18 17 19
[+1*t^2+2*t+4](复数解)
A(1/2*t+1,-2/3*t-2/3)
B(t/4+1/2,-t/2)
C(+0,+0)
D(t/4+1/2,-t/4)
E(+1,-1-t/2)
F(t/2,+1)
G[+1,t/2,0];
H(+1,+1)
I(t+2,-1-t/2)
J[+1,v1,0];
K(+0,+1)
L(+1,+0)
M(t/2,-t)
N(1/2*t+1,-1-t/2)
O(+0,-t/2)
P[+0,+1,0];
Q(t/2,-t/2)
R(1/2*t+1,+0)
S[+1,+0,0];
CFGNCHIODGKQEFJPDIJREHKSJKNOGIPSFHQRFIKLGHJMDLNPEMNQCLQSCMPRDMOSELORBNRSAOPQABLM
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
BAECDJFKHIGMLPSRNOQ 03 05 00 04 01 02 07 08 06 10 09 14 11 12 16 13 15 18 17 19
BACDEHIFGKJMLONSRQP 01 00 04 05 02 03 06 07 08 10 09 15 16 14 13 11 12 18 17 19
ABDECIJGKHFLMRQOPSN 04 02 03 01 05 00 08 06 07 09 10 16 14 11 15 12 13 17 18 19
ABECDKHJFGILMSPQONR 05 03 01 02 00 04 07 08 06 09 10 13 15 16 12 14 11 17 18 19
BADCEKGJIHFLMQRSNOP 02 04 00 05 01 03 08 07 06 09 10 13 12 11 15 14 16 18 17 19
ABCEDGFIHKJMLNOQPSR 00 01 03 02 05 04 06 08 07 10 09 12 11 14 13 16 15 17 18 19
BAEDCFJHKGILMPSNRQO 03 05 04 00 02 01 07 06 08 09 10 11 14 16 12 15 13 18 17 19
BACEDIHGFJKLMONRSPQ 01 00 05 04 03 02 06 08 07 09 10 16 15 13 14 12 11 18 17 19
ABDCEJIKGFHMLRQPONS 04 02 01 03 00 05 08 07 06 10 09 14 16 15 11 13 12 17 18 19
ABEDCHKFJIGMLSPOQRN 05 03 02 01 04 00 07 06 08 10 09 15 13 12 16 11 14 17 18 19
BADECGKIJFHMLQRNSPO 02 04 05 00 03 01 08 06 07 10 09 12 13 15 11 16 14 18 17 19
Parameter [+1/3+1*t^2=0](复数解)
A[+1/2+3/2*t ,+1/2-3/2*t , +1]
B[+1/2-3/2*t ,+1/2+3/2*t , +1]
C[+1/2-1/2*t ,+1/2-1/2*t , +1]
D[0 ,0 , +1]
E[+1 ,+1 , +1]
F[+1/2-1/2*t ,+1-1*t , +1]
G[+1/2-1/2*t ,-1*t , +1]
H[+1-1*t ,+1/2-1/2*t , +1]
I[-1*t ,+1/2-1/2*t , +1]
J[+1 ,+1/2+3/2*t , 0]
K[+1 ,+1/2-3/2*t , 0]
L[0 ,+1 , +1]
M[+1 ,0 , +1]
N[0 ,+1 , 0]
O[+1 ,0 , 0]
P[0 ,+1/2-3/2*t , +1]
Q[+1 ,+1/2-3/2*t , +1]
R[+1/2-3/2*t ,+1 , +1]
S[+1/2-3/2*t ,0 , +1]
DEFSGILSHJKSDIKRDJLQEGJOEHIPFGKMFHLNMPQSNORSADMNAFOPAEQRBJPRCIOQCLMRBKNQCGNPBHMO
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
ACBEFDKLHGIJRQMNOPS 00 02 01 06 05 07 08 03 04 10 09 13 11 12 18 19 14 15 17 16
ABCFDEIJLKHGPORQMNS 00 01 02 08 07 03 04 06 05 09 10 12 13 11 17 16 18 19 15 14
ACBDEFHGJILKNMPORQS 00 02 01 04 03 06 05 08 07 10 09 11 12 13 15 14 17 16 19 18
ABCEFDLKGHJIQRNMPOS 00 01 02 05 06 08 07 04 03 09 10 13 11 12 19 18 15 14 16 17
ACBFDEJIKLGHOPQRNMS 00 02 01 07 08 04 03 05 06 10 09 12 13 11 16 17 19 18 14 15
+1*v0+1
+1*v1-1*v8
+1*v2+1*v8
+1*v3+1*v8+1*v10+1*v11-2
+1*v4-1*v8-1*v10-1*v11+1
+1*v5+1*v8+1*v10+1*v11-1
+1*v6+1*v8+1*v11
+1*v7+1*v8+1
+1*v9-1*v10+1
+1*v8^2+1*v8+1(复数解)
+1*v8*v10-2*v8-1*v11
+1*v10^2+1*v8-1*v10+1*v11-1
+1*v8*v11+1*v10+1*v11-2
+1*v10*v11-1*v10+1
+1*v11^2-1*v8-2*v10-3*v11+4
A(+1,+0)
B(v7,+1)
C(v8,v2)
D(v3,+0)
E(v3,v9)
F(v3,v4)
G(v5,v4)
H(v6,+1)
I(v5,v10)
J(v6,v11)
K(v6,v4)
L(v5,v2)
M[+1,+0,0];
N(+0,+0)
O(+0,+1)
P[+1,v0,0];
Q[+1,v1,0];
R(+0,v2)
S[+0,+1,0];
DGIPEFHQCFLOCGKNDHLNEIKOFGRSCHPSCIQRDMOREMNSDJQSEJPRNOPQBGJOAFJNBILSAHKRALMQBKMP
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
BACEDGFIHJLKMONQPSR 01 00 03 02 05 04 06 08 07 10 09 12 11 13 15 14 17 16 19 18
A[+4 ,+1 , +1]
B[+1 ,+4 , +1]
C[0 ,0 , +1]
D[+2 ,-2 , +1]
E[-2 ,+2 , +1]
F[+1 ,-1/2 , 0]
G[+1 ,-2 , 0]
H[0 ,+1 , +1]
I[+1 ,0 , +1]
J[+2 ,+2 , +1]
K[-1/2 ,+1 , +1]
L[+1 ,-1/2 , +1]
M[-2 ,-2 , +1]
N[-2 ,+4 , +1]
O[+4 ,-2 , +1]
P[0 ,+2 , +1]
Q[+2 ,0 , +1]
R[+1 ,0 , 0]
S[0 ,+1 , 0]
去除无穷远点,得到
DIKQEIJPFHKRGHJSCFPSCGQRCINOEKOSDJNRCJKMDEHLEFMNDGMOHMPQILRSFLOQGLNPBNQSAOPRABLM
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
BACEDGFHIKJLMONQPSR 01 00 03 02 05 04 06 08 07 09 10 12 11 13 14 16 15 18 17 19
+1*v3+1*v10
+1*v5+1*v10+1
+1*v10*v11-2*v8+1*v11
+1*v4-2*v8
+1*v8*v10+1/2*v11
+1*v8^2-1/2*v8+1/2*v11-3/4
+1*v10^2+1*v10+1(复数解)
+1*v1+2/3*v8-2/3*v11+1
+1*v2-2/3*v8-1/3*v11
+1*v6-4/3*v8+1/3*v11
+1*v9+1/2*v10
+1*v8*v11-2*v8+3/2*v10+1/2*v11
+1*v0-2/3*v8+1*v10-1/3*v11+1
+1*v7-1/3*v8+1/2*v10+1/3*v11
+1*v11^2-2*v8+3*v10-1*v11+3
A(+1,+0)
B(v2,v7)
C[+1,v0,0];
D(v8,v9)
E(+0,+1)
F[+1,v1,0];
G(v4,v3)
H(v4,v5)
I(v6,+1)
J(v4,+1)
K(+0,v10)
L(v6,v3)
M(v11,v5)
N(v2,v3)
O(+0,+0)
P[+1,+0,0];
Q(v2,v5)
R(v6,+0)
S[+0,+1,0];
FIKNEJLNDHIPDGJOEHKOFGLPDEFMIJMQGKMRHLMSFOQSEPQRDNRSMNOPCGHQBJKSAILRABNQACPSBCOR
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
BCAFDELIKGHJMOPNRSQ 04 03 00 05 02 01 06 08 09 07 11 12 10 13 16 14 15 19 17 18
CABEFDJKHLIGMPNOSQR 02 05 04 01 00 03 06 09 07 08 12 10 11 13 15 16 14 18 19 17
BACDFEHGJILKMNPOQSR 01 00 03 02 05 04 06 07 09 08 11 10 12 13 14 16 15 17 19 18
CBAFEDILGKJHMONPRQS 03 04 05 00 01 02 06 08 07 09 12 11 10 13 16 15 14 19 18 17
ACBEDFKJLHGIMPONSRQ 05 02 01 04 03 00 06 09 08 07 10 12 11 13 15 14 16 18 17 19
Parameter [+1+1*t+1*t^2=0](复数解)
A[-1-2*t ,-1-2*t , +1]
B[-1 ,-1-2*t , +1]
C[-1/3-2/3*t ,+1 , +1]
D[+1 ,+2+1*t , +1]
E[+1 ,0 , +1]
F[+1 ,+1-1*t , +1]
G[0 ,+1 , +1]
H[-1*t ,+1 , +1]
I[+1 ,+1 , 0]
J[+1 ,+1+1*t , 0]
K[0 ,-1*t , +1]
L[-1*t ,-1*t , +1]
M[0 ,+1 , 0]
N[-1-1*t ,-1-2*t , +1]
O[-1-1*t ,+1-1*t , +1]
P[-1-1*t ,0 , +1]
Q[+1 ,0 , 0]
R[0 ,0 , +1]
S[-1*t ,+1-1*t , +1]
JNQSJOPRIJLMFKRSIKPQGHJKFHOQFGNPGIOSHINREGLREHMSDLPSDMQRDENOCEFJAKLNBKMOBCLQACMP
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
BACDEFHGIJKMLONQPSR 01 00 02 03 04 05 07 06 09 08 11 10 13 12 14 15 17 16 19 18
Parameter [+1-1*t+1*t^2=0](复数解)
A[+1/2*t ,-1/2+1/2*t , +1]
B[+2*t ,-1 , +1]
C[+1 ,-2+2*t , +1]
D[-1*t ,+1*t , +1]
E[+1 ,+1-1*t , +1]
F[+1 ,0 , +1]
G[+1*t ,+1 , +1]
H[+1*t ,+1-1*t , +1]
I[-1+1*t ,+1 , +1]
J[0 ,+1 , 0]
K[+1*t ,0 , +1]
L[-1+1*t ,+1*t , +1]
M[-1+1*t ,+1-1*t , +1]
N[+1 ,-1*t , 0]
O[0 ,+1 , +1]
P[0 ,+1*t , +1]
Q[+1 ,-1 , 0]
R[0 ,0 , +1]
S[+1 ,0 , 0]
JNRSJOPQGHIJJKLMAINOCGPSBHQRCLNQAKPRBMOSFMNPFKQSFLORDGKNEHKOEGMQEILPDHLSDIMRABCJ
Start group:
ABCDEFGHIJKLMNOPQRS 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
CBAEDFIHGJLKMPSNRQO 01 00 02 03 05 04 06 08 07 09 10 12 11 16 17 18 13 14 15 19
ACBEDFHGIJKMLONRSPQ 01 00 02 03 04 06 05 09 08 07 12 11 10 14 13 17 18 15 16 19
BCADEFIGHJMKLRQOPSN 00 01 02 03 06 04 05 08 09 07 12 10 11 18 15 16 14 13 17 19
CABDEFHIGJLMKSPQONR 00 01 02 03 05 06 04 09 07 08 11 12 10 17 16 14 15 18 13 19
BACEDFGIHJMLKQRSNOP 01 00 02 03 06 05 04 07 09 08 11 10 12 15 18 13 17 16 14 19
Parameter [+3+1*t^2=0](复数解)
A[+1 ,0 , +1]
B[+1 ,-1/2-1/2*t , +1]
C[+1 ,+1/2-1/2*t , +1]
D[-1+1*t ,+3/2-1/2*t , +1]
E[-1/4+1/4*t ,+3/4-1/4*t , +1]
F[-1 ,+1 , +1]
G[+1/2+1/2*t ,+3/2-1/2*t , +1]
H[+1/2+1/2*t ,-1*t , +1]
I[+1/2+1/2*t ,0 , +1]
J[0 ,+1 , 0]
K[-1/2+1/2*t ,+3/2-1/2*t , +1]
L[-1/2+1/2*t ,+1/2-1/2*t , +1]
M[-1/2+1/2*t ,+1 , +1]
N[+1 ,0 , 0]
O[0 ,0 , +1]
P[0 ,+1 , +1]
Q[0 ,+1/2-1/2*t , +1]
R[+1 ,-1 , 0]
S[+1 ,-1/2-1/2*t , 0]
那些置换关系只有一种的显然是不具有任何对称性的,至少现在已知很多较好的解(比如大部分已知的21棵树以上当前最佳的整数坐标解都不具有明显的对称性)。
另外从搜索的复杂度来说,对称性越强,我们可以一次性处理越多的行,代码搜索效率越高。现在处理20多棵树,如果置换群的阶不小于3,计算机基本上还是可以穷举的。但是置换群小于等于2(比如左右对称的情况),就已经很难穷举了。这也是为什么我最近找出来的结果会具有高度对称性。
但是另外一个比较麻烦的现象是我发现满足高度对称性的大部分解都是复数解,没有实数解。
|
|