- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19886
- 在线时间
- 小时
|
楼主 |
发表于 2013-12-30 20:29:39
|
显示全部楼层
根据133#的结论:
我们设外椭圆(即P点的轨迹)为$x^2/a^2+y^2/b^2=1$,内椭圆为$x^2/(a^2-t)+y^2/(b^2-t)=1$
则$det(A+x*B)=(x/a^2+1/(a^2-t))*(x/b^2+1/(b^2-t))*(-1-x)$
$sqrt(det(A+x*B))=I/sqrt((a^2-t)(b^2-t))*(s_0+s_1*x+s_2*x^2+s_3*x^3+s_4*x^4+....)$
$s_0=1$
$s_1=((-a^2-b^2)*t+3*a^2*b^2)/{2ab}$
$s_2=((-a^4+2*a^2*b^2-b^4)*t^2+(-2*a^4*b^2-2*a^2*b^4)*t+3*a^4*b^4)/{8a^3b^3}$
$s_3=((-a^6+a^4*b^2+a^2*b^4-b^6)*t^3+(a^6*b^2-2*a^4*b^4+a^2*b^6)*t^2+(a^6*b^4+a^4*b^6)*t-a^6*b^6)/{16a^5b^5}$
$s_4=((-5*a^8+4*a^6*b^2+2*a^4*b^4+4*a^2*b^6-5*b^8)*t^4+(12*a^8*b^2-12*a^6*b^4-12*a^4*b^6+12*a^2*b^8)*t^3+(-6*a^8*b^4+12*a^6*b^6-6*a^4*b^8)*t^2+(-4*a^8*b^6-4*a^6*b^8)*t+3*a^8*b^8)/{128a^7b^7}$
..............................
根据133#的结论:
$n=3,p=1,s_2=0$即$(-a^4+2*a^2*b^2-b^4)*t^2+(-2*a^4*b^2-2*a^2*b^4)*t+3*a^4*b^4=0$,解得$t={(-a^2-b^2+2*sqrt(a^4-a^2*b^2+b^4))*b^2*a^2}/(a^4-2*a^2*b^2+b^4)$
$n=4,p=2,s_3=0$即$(-a^6+a^4*b^2+a^2*b^4-b^6)*t^3+(a^6*b^2-2*a^4*b^4+a^2*b^6)*t^2+(a^6*b^4+a^4*b^6)*t-a^6*b^6=0$解得$t={a^2*b^2}/(a^2+b^2)$
$n=5,p=2,s_3^2=s_2*s_4$即
$(-a^12+6*a^10*b^2-15*a^8*b^4+20*a^6*b^6-15*a^4*b^8+6*a^2*b^10-b^12)*t^6+(-6*a^12*b^2-14*a^10*b^4+20*a^8*b^6+20*a^6*b^8-14*a^4*b^10-6*a^2*b^12)*t^5+$
$(29*a^12*b^4-4*a^10*b^6-50*a^8*b^8-4*a^6*b^10+29*a^4*b^12)*t^4+(-36*a^12*b^6+36*a^10*b^8+36*a^8*b^10-36*a^6*b^12)*t^3+(9*a^12*b^8-34*a^10*b^10+9*a^8*b^12)*t^2+$
$(10*a^12*b^10+10*a^10*b^12)*t-5*a^12*b^12=0$
$n=6,p=3,s_4^2=s_3*s_5$即
$-(a^4*b^4+2*a^4*b^2*t-2*a^2*b^4*t-3*a^4*t^2+2*a^2*b^2*t^2+b^4*t^2)*(a^2*b^2-a^2*t-2*a*b*t-b^2*t)*(a^2*b^2-a^2*t+2*a*b*t-b^2*t)*(a^4*b^4-2*a^4*b^2*t+2*a^2*b^4*t+a^4*t^2+2*a^2*b^2*t^2-3*b^4*t^2)*$
$(3*a^4*b^4-2*a^4*b^2*t-2*a^2*b^4*t-a^4*t^2+2*a^2*b^2*t^2-b^4*t^2)=0$解得$t=({ab}/{a+b})^2$
$n=7,p=3,s_4^3-s_4(2s_3*s_5+s_2*s_6)+s_2s_5^2+s_6*s_3^2=0$即
$(a^24-12*a^22*b^2+66*a^20*b^4-220*a^18*b^6+495*a^16*b^8-792*a^14*b^10+924*a^12*b^12-792*a^10*b^14+495*a^8*b^16-220*a^6*b^18+66*a^4*b^20-12*a^2*b^22+b^24)*t^12+$
$(12*a^24*b^2+52*a^22*b^4-188*a^20*b^6-260*a^18*b^8+1208*a^16*b^10-824*a^14*b^12-824*a^12*b^14+1208*a^10*b^16-260*a^8*b^18-188*a^6*b^20+52*a^4*b^22+12*a^2*b^24)*t^11+$
$(-118*a^24*b^4+44*a^22*b^6+962*a^20*b^8-752*a^18*b^10-3404*a^16*b^12+6536*a^14*b^14-3404*a^12*b^16-752*a^10*b^18+962*a^8*b^20+44*a^6*b^22-118*a^4*b^24)*t^10+$
$(364*a^24*b^6-756*a^22*b^8-1680*a^20*b^10+5936*a^18*b^12-3864*a^16*b^14-3864*a^14*b^16+5936*a^12*b^18-1680*a^10*b^20-756*a^8*b^22+364*a^6*b^24)*t^9+$
$(-441*a^24*b^8+2184*a^22*b^10-700*a^20*b^12-5704*a^18*b^14+9322*a^16*b^16-5704*a^14*b^18-700*a^12*b^20+2184*a^10*b^22-441*a^8*b^24)*t^8+$
$(-168*a^24*b^10-3192*a^22*b^12+3928*a^20*b^14-568*a^18*b^16-568*a^16*b^18+3928*a^14*b^20-3192*a^12*b^22-168*a^10*b^24)*t^7+$$(1260*a^24*b^12+2520*a^22*b^14-3756*a^20*b^16-48*a^18*b^18-3756*a^16*b^20+2520*a^14*b^22+1260*a^12*b^24)*t^6+(-1800*a^24*b^14-744*a^22*b^16+2544*a^20*b^18+$
$2544*a^18*b^20-744*a^16*b^22-1800*a^14*b^24)*t^5+(1311*a^24*b^16-444*a^22*b^18-1734*a^20*b^20-444*a^18*b^22+1311*a^16*b^24)*t^4+(-484*a^24*b^18+516*a^22*b^20+$
$516*a^20*b^22-484*a^18*b^24)*t^3+(42*a^24*b^20-196*a^22*b^22+42*a^20*b^24)*t^2+(28*a^24*b^22+28*a^22*b^24)*t-7*a^24*b^24=0$
$n=8,p=4,s_5^3-s_5*(2s_4*s_6+s_3*s_7)+s_3*s_6^2+s_4*s_7^2=0$即
$(a^30-5*a^28*b^2-11*a^26*b^4+159*a^24*b^6-595*a^22*b^8+1199*a^20*b^10-1375*a^18*b^12+627*a^16*b^14+627*a^14*b^16-1375*a^12*b^18+1199*a^10*b^20-595*a^8*b^22+159*a^6*b^24-11*a^4*b^26-5*a^2*b^28+b^30)*t^15+$
$(-5*a^30*b^2+46*a^28*b^4-167*a^26*b^6+236*a^24*b^8+275*a^22*b^10-1870*a^20*b^12+3993*a^18*b^14-5016*a^16*b^16+3993*a^14*b^18-1870*a^12*b^20+275*a^10*b^22+236*a^8*b^24-167*a^6*b^26+46*a^4*b^28-5*a^2*b^30)*t^14+$
$(-11*a^30*b^4-167*a^28*b^6+718*a^26*b^8-1474*a^24*b^10+3215*a^22*b^12-5245*a^20*b^14+2964*a^18*b^16+2964*a^16*b^18-5245*a^14*b^20+3215*a^12*b^22-1474*a^10*b^24+718*a^8*b^26-167*a^6*b^28-11*a^4*b^30)*t^13+$
$(159*a^30*b^6+236*a^28*b^8-1474*a^26*b^10+60*a^24*b^12+625*a^22*b^14+8920*a^20*b^16-17052*a^18*b^18+8920*a^16*b^20+625*a^14*b^22+60*a^12*b^24-1474*a^10*b^26+236*a^8*b^28+159*a^6*b^30)*t^12+$
$(-595*a^30*b^8+275*a^28*b^10+3215*a^26*b^12+625*a^24*b^14-14990*a^22*b^16+11470*a^20*b^18+11470*a^18*b^20-14990*a^16*b^22+625*a^14*b^24+3215*a^12*b^26+275*a^10*b^28-595*a^8*b^30)*t^11+$
$(1199*a^30*b^10-1870*a^28*b^12-5245*a^26*b^14+8920*a^24*b^16+11470*a^22*b^18-28948*a^20*b^20+11470*a^18*b^22+8920*a^16*b^24-5245*a^14*b^26-1870*a^12*b^28+1199*a^10*b^30)*t^10+$
$(-1375*a^30*b^12+3993*a^28*b^14+2964*a^26*b^16-17052*a^24*b^18+11470*a^22*b^20+11470*a^20*b^22-17052*a^18*b^24+2964*a^16*b^26+3993*a^14*b^28-1375*a^12*b^30)*t^9+$
$(627*a^30*b^14-5016*a^28*b^16+2964*a^26*b^18+8920*a^24*b^20-14990*a^22*b^22+8920*a^20*b^24+2964*a^18*b^26-5016*a^16*b^28+627*a^14*b^30)*t^8+$
$(627*a^30*b^16+3993*a^28*b^18-5245*a^26*b^20+625*a^24*b^22+625*a^22*b^24-5245*a^20*b^26+3993*a^18*b^28+627*a^16*b^30)*t^7+$
$(-1375*a^30*b^18-1870*a^28*b^20+3215*a^26*b^22+60*a^24*b^24+3215*a^22*b^26-1870*a^20*b^28-1375*a^18*b^30)*t^6+(1199*a^30*b^20+275*a^28*b^22-1474*a^26*b^24-1474*a^24*b^26+275*a^22*b^28+$
$1199*a^20*b^30)*t^5+(-595*a^30*b^22+236*a^28*b^24+718*a^26*b^26+236*a^24*b^28-595*a^22*b^30)*t^4+(159*a^30*b^24-167*a^28*b^26-167*a^26*b^28+159*a^24*b^30)*t^3+$
$(-11*a^30*b^26+46*a^28*b^28-11*a^26*b^30)*t^2+(-5*a^30*b^28-5*a^28*b^30)*t+a^30*b^30=0$
注:可以验证$n=3,4,6$求得的结果与http://bbs.emath.ac.cn/forum.php ... p;extra=&page=5 的结果是一样的
$n=3$时,$m=a*{sqrt(a^4+b^4-a^2*b^2)-b^2}/{a^2-b^2}$,即$t=a^2-m^2={(-a^2-b^2+2*sqrt(a^4-a^2*b^2+b^4))*b^2*a^2}/(a^4-2*a^2*b^2+b^4)$
$n=4$时,$m=a^2/sqrt(a^2+b^2)$,即$t=a^2-m^2={a^2*b^2}/(a^2+b^2)$
$n=6$时,$m=a*sqrt(a^2+2*a*b)/{a+b}$,即$t=a^2-m^2=({ab}/{a+b})^2$
至此,对于椭圆内接$N$边形最大周长问题已有更简便的计算方法。 |
|