- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19886
- 在线时间
- 小时
|
楼主 |
发表于 2020-6-14 12:38:02
|
显示全部楼层
对于内接椭圆\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)的正三角形问题:
其边长设为\(L\),便于消元计算设正三角的三个顶点坐标为
\([\frac{a(1-m^2)}{1+m^2},\frac{2bm}{1+m^2}],[\frac{a(1-n^2)}{1+n^2},\frac{2bn}{1+n^2}],[\frac{a(1-p^2)}{1+p^2},\frac{2bp}{1+p^2}]\)
正三角形的中心\([x_0,y_0]\),其中正三角形的一个顶点\(x=\frac{a(1-m^2)}{1+m^2},y=\frac{2bm}{1+m^2}\)
\(-L^2m^4n^4-2L^2m^4n^2-2L^2m^2n^4+4b^2m^4n^2-8b^2m^3n^3+4b^2m^2n^4-L^2m^4-4L^2m^2n^2-L^2n^4+4a^2m^4-8a^2m^2n^2+4a^2n^4-8b^2m^3n+16b^2m^2n^2-8b^2mn^3-2L^2m^2-2L^2n^2+4b^2m^2-8b^2mn+4b^2n^2-L^2=0\)
\(-L^2n^4p^4-2L^2n^4p^2-2L^2n^2p^4+4b^2n^4p^2-8b^2n^3p^3+4b^2n^2p^4-L^2n^4-4L^2n^2p^2-L^2p^4+4a^2n^4-8a^2n^2p^2+4a^2p^4-8b^2n^3p+16b^2n^2p^2-8b^2np^3-2L^2n^2-2L^2p^2+4b^2n^2-8b^2np+4b^2p^2-L^2=0\)
\(-L^2m^4p^4-2L^2m^4p^2-2L^2m^2p^4+4b^2m^4p^2-8b^2m^3p^3+4b^2m^2p^4-L^2m^4-4L^2m^2p^2-L^2p^4+4a^2m^4-8a^2m^2p^2+4a^2p^4-8b^2m^3p+16b^2m^2p^2-8b^2mp^3-2L^2m^2-2L^2p^2+4b^2m^2-8b^2mp+4b^2p^2-L^2=0\)
\(3am^2n^2p^2+3m^2n^2p^2x_0+am^2n^2+am^2p^2+an^2p^2+3m^2n^2x_0+3m^2p^2x_0+3n^2p^2x_0-am^2-an^2-ap^2+3m^2x_0+3n^2x_0+3p^2x_0-3a+3x_0=0\)
\(3m^2n^2p^2y_0-2bm^2n^2p-2bm^2np^2-2bmn^2p^2+3m^2n^2y_0+3m^2p^2y_0+3n^2p^2y_0-2bm^2n-2bm^2p-2bmn^2-2bmp^2-2bn^2p-2bnp^2+3m^2y_0+3n^2y_0+3p^2y_0-2bm-2bn-2bp+3y_0=0\)
正三角形中心轨迹方程:
\(-a^2(3a^2+b^2)^2y_0^2-b^2(a^2+3b^2)^2x_0^2+a^2b^2(a-b)^2(a+b)^2=0\)
椭圆\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)内接正三角的顶点\([x,y]\)与边长L的关系\(x=a\cos(\theta),y=b\sin(\theta)\)
\((81a^{12}+378a^{10}b^2+63a^8b^4-1044a^6b^6+63a^4b^8+378a^2b^{10}+81b^{12})L^6+(648\cos(2\theta)a^{12}b^2+216\cos(2\theta)a^{10}b^4+2256\cos(2\theta)a^8b^6-2256\cos(2\theta)a^6b^8-216\cos(2\theta)a^4b^{10}-648\cos(2\theta)a^2b^{12}-648a^{12}b^2-3816a^{10}b^4+4464b^6a^8+4464b^8a^6-3816b^{10}a^4-648a^2b^{12})L^4+(864\cos(4\theta)a^{12}b^4-1920\cos(4\theta)a^{10}b^6+2112\cos(4\theta)a^8b^8-1920\cos(4\theta)a^6b^{10}+864\cos(4\theta)a^4b^{12}-3456\cos(2\theta)a^{12}b^4-5376\cos(2\theta)a^{10}b^6+5376\cos(2\theta)a^6b^{10}+3456\cos(2\theta)a^4b^{12}+2592a^{12}b^4+7296a^{10}b^6-15680a^8b^8+7296a^6b^{10}+2592a^4b^{12})L^2+384\cos(6\theta)a^{12}b^6-1152a^{10}b^8\cos(6\theta)+1152a^8b^{10}\cos(6\theta)-384a^6b^{12}\cos(6\theta)-2304\cos(4\theta)a^{12}b^6+2304a^{10}b^8\cos(4\theta)+2304a^8b^{10}\cos(4\theta)-2304a^6b^{12}\cos(4\theta)+5760a^{12}b^6\cos(2\theta)+1152a^{10}b^8\cos(2\theta)-1152a^8b^{10}\cos(2\theta)-5760a^6b^{12}\cos(2\theta)-3840a^{12}b^6-2304a^{10}b^8-2304a^8b^{10}-3840a^6b^{12}=0\)
\((9L^2a^4+6L^2a^2b^2+L^2b^4-48a^4b^2)(3L^2a^4+6L^2a^2b^2-9L^2b^4-16a^4b^2)^2+48b^2(a-b)(a+b)(27L^4a^8+36L^4a^6b^2+130L^4a^4b^4+36L^4a^2b^6+27L^4b^8-288L^2a^8b^2-192L^2a^6b^4-544L^2a^4b^6+768a^8b^4)x^2+768b^4(a-b)^2(a+b)^2(9L^2a^4-2L^2a^2b^2+9L^2b^4-48a^4b^2)x^4+12288b^6(a-b)^3(a+b)^3x^6=0\)
另外,我们也能得到正三角形中心轨迹椭圆上的一点\([x_0,y_0]\)与三角形边长L的简单关系:
\(L^2a^4+6L^2a^2b^2+9L^2b^4-48a^4y_0^2-48a^2b^4+48a^2b^2y_0^2=0\)
\(9L^2a^4+6L^2a^2b^2+L^2b^4-48a^4b^2+48a^2b^2x_0^2-48b^4x_0^2=0\)
|
评分
-
参与人数 1 | 威望 +1 |
金币 +1 |
贡献 +1 |
经验 +1 |
鲜花 +1 |
收起
理由
|
葡萄糖
| + 1 |
+ 1 |
+ 1 |
+ 1 |
+ 1 |
太丰富了,赞一个! |
查看全部评分
|