找回密码
 欢迎注册
楼主: 数学星空

[讨论] 三角形正负等角中心间距

 火..   [复制链接]
 楼主| 发表于 2020-6-11 21:37:44 | 显示全部楼层
可以消元得到轨迹方程:

9*a^16-108*a^14*b^2-36*a^14*x^2-60*a^14*y^2+486*a^12*b^4+348*a^12*b^2*x^2-60*a^12*b^2*y^2+54*a^12*x^4+156*a^12*x^2*y^2+118*a^12*y^4-1044*a^10*b^6-1308*a^10*b^4*x^2+732*a^10*b^4*y^2-396*a^10*b^2*x^4-376*a^10*b^2*x^2*y^2-268*a^10*b^2*y^4-36*a^10*x^6-132*a^10*x^4*y^2-156*a^10*x^2*y^4-60*a^10*y^6+1161*a^8*b^8+2580*a^8*b^6*x^2-1236*a^8*b^6*y^2+1174*a^8*b^4*x^4-356*a^8*b^4*x^2*y^2+150*a^8*b^4*y^4+180*a^8*b^2*x^6+532*a^8*b^2*x^4*y^2+524*a^8*b^2*x^2*y^4+172*a^8*b^2*y^6+9*a^8*x^8+36*a^8*x^6*y^2+54*a^8*x^4*y^4+36*a^8*x^2*y^6+9*a^8*y^8-648*a^6*b^10-2832*a^6*b^8*x^2+816*a^6*b^8*y^2-1888*a^6*b^6*x^4+1728*a^6*b^6*x^2*y^2+32*a^6*b^6*y^4-368*a^6*b^4*x^6-912*a^6*b^4*x^4*y^2-720*a^6*b^4*x^2*y^4-176*a^6*b^4*y^6-24*a^6*b^2*x^8-96*a^6*b^2*x^6*y^2-144*a^6*b^2*x^4*y^4-96*a^6*b^2*x^2*y^6-24*a^6*b^2*y^8+144*a^4*b^12+1632*a^4*b^10*x^2-192*a^4*b^10*y^2+1824*a^4*b^8*x^4-1664*a^4*b^8*x^2*y^2-32*a^4*b^8*y^4+352*a^4*b^6*x^6+768*a^4*b^6*x^4*y^2+480*a^4*b^6*x^2*y^4+64*a^4*b^6*y^6+16*a^4*b^4*x^8+64*a^4*b^4*x^6*y^2+96*a^4*b^4*x^4*y^4+64*a^4*b^4*x^2*y^6+16*a^4*b^4*y^8-384*a^2*b^12*x^2-1024*a^2*b^10*x^4+512*a^2*b^10*x^2*y^2-128*a^2*b^8*x^6-256*a^2*b^8*x^4*y^2-128*a^2*b^8*x^2*y^4+256*b^12*x^4=0


\(9a^{16}-108a^{14}b^2-36a^{14}x^2-60a^{14}y^2+486a^{12}b^4+348a^{12}b^2x^2-60a^{12}b^2y^2+54a^{12}x^4+156a^{12}x^2y^2+118a^{12}y^4-1044a^{10}b^6-1308a^{10}b^4x^2+732a^{10}b^4y^2-396a^{10}b^2x^4-376a^{10}b^2x^2y^2-268a^{10}b^2y^4-36a^{10}x^6-132a^{10}x^4y^2-156a^{10}x^2y^4-60a^{10}y^6+1161a^8b^8+2580a^8b^6x^2-1236a^8b^6y^2+1174a^8b^4x^4-356a^8b^4x^2y^2+150a^8b^4y^4+180a^8b^2x^6+532a^8b^2x^4y^2+524a^8b^2x^2y^4+172a^8b^2y^6+9a^8x^8+36a^8x^6y^2+54a^8x^4y^4+36a^8x^2y^6+9a^8y^8-648a^6b^{10}-2832a^6b^8x^2+816a^6b^8y^2-1888a^6b^6x^4+1728a^6b^6x^2y^2+32a^6b^6y^4-368a^6b^4x^6-912a^6b^4x^4y^2-720a^6b^4x^2y^4-176a^6b^4y^6-24a^6b^2x^8-96a^6b^2x^6y^2-144a^6b^2x^4y^4-96a^6b^2x^2y^6-24a^6b^2y^8+144a^4b^{12}+1632a^4b^{10}x^2-192a^4b^{10}y^2+1824a^4b^8x^4-1664a^4b^8x^2y^2-32a^4b^8y^4+352a^4b^6x^6+768a^4b^6x^4y^2+480a^4b^6x^2y^4+64a^4b^6y^6+16a^4b^4x^8+64a^4b^4x^6y^2+96a^4b^4x^4y^4+64a^4b^4x^2y^6+16a^4b^4y^8-384a^2b^{12}x^2-1024a^2b^{10}x^4+512a^2b^{10}x^2y^2-128a^2b^8x^6-256a^2b^8x^4y^2-128a^2b^8x^2y^4+256b^{12}x^4=0\)

例如:取 \(a=5,b=3\) 得到

\(950625x^8+3802500x^6y^2+5703750x^4y^4+3802500x^2y^6+950625y^8-45115200x^6-265070400x^4y^2-394795200x^2y^4-174840000y^6+123434496x^4+7390387200x^2y^2+10233280000y^4+9772646400x^2-194426880000y^2+44605440000=0\)

我们可以取点
\(a = 5, b = 3, c = 4, x = \frac{836800}{196729}-\frac{256000}{196729}\sqrt{3}, x_0 = 3, y =\frac{354560}{196729}-\frac{372052}{590187}\sqrt{3}, y_0 =\frac{12}{5}\)

画图得到

椭圆等力点图例.gif

点评

】当b/a=√3/2时,8次曲线变成6次曲线,图形不封闭。  发表于 2020-6-13 07:05
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-11 22:56:30 | 显示全部楼层
今日学校放月假,我行吟在二教大楼前坪,踏响《荷塘月色》的优美旋律:
剪一段时光缓缓流淌,流进了月色中微微荡漾,弹一首小荷淡淡的香,美丽的琴音就落在我身旁,
萤火虫点亮夜的星光,谁为我添一件梦的衣裳,推开那扇心窗远远地望,谁采下那一朵昨日的忧伤,
我像只鱼儿在你的荷塘,只为和你守候那皎洁月光......
忽然看到平时忙于事业、难得上网的数学星空老师的论帖,非常高兴,撰联一副欢迎:
仰望星空,数学招来云外客;
行吟月夜,难题引出洞中仙。


补充内容 (2020-6-12 20:40):
据《湖南日报》特约通讯员校办周主任说:这里原是一口长满荷花的大池塘------鲤鱼塘,叶动无穷碧,花开别样红。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-12 19:55:30 | 显示全部楼层
本帖最后由 陈九章 于 2020-6-12 20:03 编辑

ty.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-12 20:35:38 | 显示全部楼层
很有趣的问题,找到了:
ty4.png

点评

https://bbs.emath.ac.cn/thread-17403-1-1.html  发表于 2020-8-13 22:04
求解这个问题应该比较难。请问星空老师:椭圆的内接光线三角形内心的轨迹是什么?  发表于 2020-6-12 22:06
问题是先不知道轨迹是椭圆。谢谢星空老师的赐教!您的光临,星空浩瀚,数学生光!  发表于 2020-6-12 21:59
取椭圆的上,左顶点分别作正三角形,然后可以直接算出小椭圆的短,长轴长度  发表于 2020-6-12 21:26
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-12 22:18:14 | 显示全部楼层
想起来了,这个问题,我以前考虑过,如下第3个结论,推导过程,现在没有印象了,请老师审阅、赐教!
8081433eb13533fa80b9aba5a1d3fd1f40345b83.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-12 22:21:04 | 显示全部楼层
494ff624ab18972be7bb3841efcd7b899f510a15.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2020-6-12 22:26:53 | 显示全部楼层
椭圆内接N边形周长最大值
https://bbs.emath.ac.cn/thread-3740-1-1.html

点评

椭圆的光线n边形有无数个,它们都具有同一个最大周长,您画出有对称性的那一个,真的很好,很深刻的结论!  发表于 2020-6-13 06:51
谢谢星空老师提供链接,这个名帖解决了一个大问题,我以前认真学习过。谢谢老师,您辛苦了!  发表于 2020-6-13 06:49
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-13 06:52:57 | 显示全部楼层
光线三角形的内心.png
这个结论,请星空老师审阅,并赐教!

补充内容 (2023-4-28 16:50):
这个结论有误。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-13 09:57:25 | 显示全部楼层
本帖最后由 葡萄糖 于 2020-6-13 10:10 编辑
陈九章 发表于 2020-6-12 20:35
很有趣的问题,找到了:

\(\,\dfrac{x^{2}}{\left(\left(\frac{a^{2}-b^{2}}{a^{2}+3b^{2}}\right)a\right)^{2}}+\dfrac{y^{2}}{\left(\left(\frac{a^{2}-b^{2}}{3a^{2}+b^{2}}\right)b\right)^{2}}=1\,\)
好奇,轨迹上点坐标与正三角形边长的关系

点评

Equilateral triangle inscribed in an ellipse  发表于 2020-6-13 12:50
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2020-6-14 12:38:02 | 显示全部楼层
对于内接椭圆\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)的正三角形问题:

其边长设为\(L\),便于消元计算设正三角的三个顶点坐标为

\([\frac{a(1-m^2)}{1+m^2},\frac{2bm}{1+m^2}],[\frac{a(1-n^2)}{1+n^2},\frac{2bn}{1+n^2}],[\frac{a(1-p^2)}{1+p^2},\frac{2bp}{1+p^2}]\)

正三角形的中心\([x_0,y_0]\),其中正三角形的一个顶点\(x=\frac{a(1-m^2)}{1+m^2},y=\frac{2bm}{1+m^2}\)

\(-L^2m^4n^4-2L^2m^4n^2-2L^2m^2n^4+4b^2m^4n^2-8b^2m^3n^3+4b^2m^2n^4-L^2m^4-4L^2m^2n^2-L^2n^4+4a^2m^4-8a^2m^2n^2+4a^2n^4-8b^2m^3n+16b^2m^2n^2-8b^2mn^3-2L^2m^2-2L^2n^2+4b^2m^2-8b^2mn+4b^2n^2-L^2=0\)

\(-L^2n^4p^4-2L^2n^4p^2-2L^2n^2p^4+4b^2n^4p^2-8b^2n^3p^3+4b^2n^2p^4-L^2n^4-4L^2n^2p^2-L^2p^4+4a^2n^4-8a^2n^2p^2+4a^2p^4-8b^2n^3p+16b^2n^2p^2-8b^2np^3-2L^2n^2-2L^2p^2+4b^2n^2-8b^2np+4b^2p^2-L^2=0\)

\(-L^2m^4p^4-2L^2m^4p^2-2L^2m^2p^4+4b^2m^4p^2-8b^2m^3p^3+4b^2m^2p^4-L^2m^4-4L^2m^2p^2-L^2p^4+4a^2m^4-8a^2m^2p^2+4a^2p^4-8b^2m^3p+16b^2m^2p^2-8b^2mp^3-2L^2m^2-2L^2p^2+4b^2m^2-8b^2mp+4b^2p^2-L^2=0\)

\(3am^2n^2p^2+3m^2n^2p^2x_0+am^2n^2+am^2p^2+an^2p^2+3m^2n^2x_0+3m^2p^2x_0+3n^2p^2x_0-am^2-an^2-ap^2+3m^2x_0+3n^2x_0+3p^2x_0-3a+3x_0=0\)

\(3m^2n^2p^2y_0-2bm^2n^2p-2bm^2np^2-2bmn^2p^2+3m^2n^2y_0+3m^2p^2y_0+3n^2p^2y_0-2bm^2n-2bm^2p-2bmn^2-2bmp^2-2bn^2p-2bnp^2+3m^2y_0+3n^2y_0+3p^2y_0-2bm-2bn-2bp+3y_0=0\)

正三角形中心轨迹方程:

\(-a^2(3a^2+b^2)^2y_0^2-b^2(a^2+3b^2)^2x_0^2+a^2b^2(a-b)^2(a+b)^2=0\)

椭圆\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)内接正三角的顶点\([x,y]\)与边长L的关系\(x=a\cos(\theta),y=b\sin(\theta)\)

\((81a^{12}+378a^{10}b^2+63a^8b^4-1044a^6b^6+63a^4b^8+378a^2b^{10}+81b^{12})L^6+(648\cos(2\theta)a^{12}b^2+216\cos(2\theta)a^{10}b^4+2256\cos(2\theta)a^8b^6-2256\cos(2\theta)a^6b^8-216\cos(2\theta)a^4b^{10}-648\cos(2\theta)a^2b^{12}-648a^{12}b^2-3816a^{10}b^4+4464b^6a^8+4464b^8a^6-3816b^{10}a^4-648a^2b^{12})L^4+(864\cos(4\theta)a^{12}b^4-1920\cos(4\theta)a^{10}b^6+2112\cos(4\theta)a^8b^8-1920\cos(4\theta)a^6b^{10}+864\cos(4\theta)a^4b^{12}-3456\cos(2\theta)a^{12}b^4-5376\cos(2\theta)a^{10}b^6+5376\cos(2\theta)a^6b^{10}+3456\cos(2\theta)a^4b^{12}+2592a^{12}b^4+7296a^{10}b^6-15680a^8b^8+7296a^6b^{10}+2592a^4b^{12})L^2+384\cos(6\theta)a^{12}b^6-1152a^{10}b^8\cos(6\theta)+1152a^8b^{10}\cos(6\theta)-384a^6b^{12}\cos(6\theta)-2304\cos(4\theta)a^{12}b^6+2304a^{10}b^8\cos(4\theta)+2304a^8b^{10}\cos(4\theta)-2304a^6b^{12}\cos(4\theta)+5760a^{12}b^6\cos(2\theta)+1152a^{10}b^8\cos(2\theta)-1152a^8b^{10}\cos(2\theta)-5760a^6b^{12}\cos(2\theta)-3840a^{12}b^6-2304a^{10}b^8-2304a^8b^{10}-3840a^6b^{12}=0\)



\((9L^2a^4+6L^2a^2b^2+L^2b^4-48a^4b^2)(3L^2a^4+6L^2a^2b^2-9L^2b^4-16a^4b^2)^2+48b^2(a-b)(a+b)(27L^4a^8+36L^4a^6b^2+130L^4a^4b^4+36L^4a^2b^6+27L^4b^8-288L^2a^8b^2-192L^2a^6b^4-544L^2a^4b^6+768a^8b^4)x^2+768b^4(a-b)^2(a+b)^2(9L^2a^4-2L^2a^2b^2+9L^2b^4-48a^4b^2)x^4+12288b^6(a-b)^3(a+b)^3x^6=0\)



另外,我们也能得到正三角形中心轨迹椭圆上的一点\([x_0,y_0]\)与三角形边长L的简单关系:

\(L^2a^4+6L^2a^2b^2+9L^2b^4-48a^4y_0^2-48a^2b^4+48a^2b^2y_0^2=0\)

\(9L^2a^4+6L^2a^2b^2+L^2b^4-48a^4b^2+48a^2b^2x_0^2-48b^4x_0^2=0\)



点评

https://bbs.emath.ac.cn/thread-17403-1-1.html  发表于 2020-8-13 22:45
星空老师:您好!打扰了,如果用中心椭圆的参数方程把边长的两个公式统一成一个公式,也许更对称简单些?  发表于 2020-6-14 18:09
非常精彩!星空老师辛苦了,谢谢您!  发表于 2020-6-14 12:59

评分

参与人数 1威望 +1 金币 +1 贡献 +1 经验 +1 鲜花 +1 收起 理由
葡萄糖 + 1 + 1 + 1 + 1 + 1 太丰富了,赞一个!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 02:13 , Processed in 0.034823 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表