- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19886
- 在线时间
- 小时
|
楼主 |
发表于 2020-6-26 12:09:52
|
显示全部楼层
椭圆\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\),外切,旁切正三角形的顶点[x1,y1],[x2,y2],[x3,y3] 与正三角形边长L的关系满足:
设 \(x_2=x_1-\frac{L(1-m^2)}{1+m^2},y_2=y_1-\frac{2mL}{1+m^2},x_3=x_1+\frac{L(1-p^2)}{1+p^2},y_3=y_1+\frac{2pL}{1+p^2}\)
则有:
\(b^2m^4-m^4y_1^2-4m^3x_1y_1+4a^2m^2-2b^2m^2-4m^2x_1^2+2m^2y_1^2+4mx_1y_1+b^2-y_1^2=0\)
\(-b^2m^2p^2+m^2p^2y_1^2+2Lm^2py_1-2Lmp^2y_1+2m^2px_1y_1+2mp^2x_1y_1+L^2m^2-2L^2mp+L^2p^2+2Lm^2x_1-2Lp^2x_1-a^2m^2-2a^2mp-a^2p^2+2b^2mp+m^2x_1^2+2mpx_1^2-2mpy_1^2+p^2x_1^2-2Lmy_1+2Lpy_1-2mx_1y_1-2px_1y_1-b^2+y_1^2=0\)
\(b^2p^4-p^4y_1^2-4p^3x_1y_1+4a^2p^2-2b^2p^2-4p^2x_1^2+2p^2y_1^2+4px_1y_1+b^2-y_1^2=0\)
\(3m^2p^2-m^2+8mp-p^2+3=0\)
经消元可以得到:(x1,y1,m,p)与L的关系分别为
(27*a^4-27*a^2*x1^2+27*b^2*x1^2)*L^8+(-288*a^6-144*a^4*b^2+288*a^4*x1^2-72*a^2*b^2*x1^2-216*b^4*x1^2)*L^6+(1056*a^8+384*a^6*b^2-1200*a^6*x1^2+336*a^4*b^2*x1^2+144*a^4*x1^4+432*a^2*b^4*x1^2-288*a^2*b^2*x1^4+432*b^6*x1^2+144*b^4*x1^4)*L^4+(-1536*a^10-256*a^8*b^2+2304*a^8*x1^2-384*a^6*b^2*x1^2-768*a^6*x1^4-1920*a^4*b^4*x1^2+384*a^4*b^2*x1^4+1536*a^2*b^4*x1^4-1152*b^6*x1^4)*L^2+768*a^12-2304*x1^2*a^10+2304*b^2*x1^2*a^8+2304*x1^4*a^8-4608*b^2*x1^4*a^6-768*x1^6*a^6+2304*a^4*b^4*x1^4+2304*b^2*x1^6*a^4-2304*a^2*b^4*x1^6+768*b^6*x1^6=0
(27*a^2*y1^2+27*b^4-27*b^2*y1^2)*L^8+(-216*a^4*y1^2-144*a^2*b^4-72*a^2*b^2*y1^2-288*b^6+288*b^4*y1^2)*L^6+(432*a^6*y1^2+432*a^4*b^2*y1^2+144*a^4*y1^4+384*a^2*b^6+336*a^2*b^4*y1^2-288*a^2*b^2*y1^4+1056*b^8-1200*b^6*y1^2+144*b^4*y1^4)*L^4+(-1152*a^6*y1^4-1920*a^4*b^4*y1^2+1536*a^4*b^2*y1^4-256*a^2*b^8-384*a^2*b^6*y1^2+384*a^2*b^4*y1^4-1536*b^10+2304*b^8*y1^2-768*b^6*y1^4)*L^2+768*a^6*y1^6+2304*a^4*b^4*y1^4-2304*a^4*b^2*y1^6+2304*a^2*b^8*y1^2-4608*a^2*b^6*y1^4+2304*a^2*b^4*y1^6+768*b^12-2304*b^10*y1^2+2304*b^8*y1^4-768*b^6*y1^6=0
(27*L^8-216*L^6*a^2-216*L^6*b^2+432*L^4*a^4+576*L^4*a^2*b^2+432*L^4*b^4-1152*L^2*a^4*b^2-384*L^2*a^2*b^4-256*L^2*b^6+768*a^4*b^4)*m^12+(162*L^8-1296*L^6*a^2-1296*L^6*b^2+2592*L^4*a^4+3456*L^4*a^2*b^2+2592*L^4*b^4-9216*L^2*a^6+20736*L^2*a^4*b^2-29952*L^2*a^2*b^4+7680*L^2*b^6+4608*a^4*b^4)*m^10+(405*L^8-3240*L^6*a^2-3240*L^6*b^2+6480*L^4*a^4+8640*L^4*a^2*b^2+6480*L^4*b^4+61440*L^2*a^6-201600*L^2*a^4*b^2+178560*L^2*a^2*b^4-65280*L^2*b^6+11520*a^4*b^4)*m^8+(540*L^8-4320*L^6*a^2-4320*L^6*b^2+8640*L^4*a^4+11520*L^4*a^2*b^2+8640*L^4*b^4-120832*L^2*a^6+339456*L^2*a^4*b^2-370176*L^2*a^2*b^4+115712*L^2*b^6+15360*a^4*b^4)*m^6+(405*L^8-3240*L^6*a^2-3240*L^6*b^2+6480*L^4*a^4+8640*L^4*a^2*b^2+6480*L^4*b^4+61440*L^2*a^6-201600*L^2*a^4*b^2+178560*L^2*a^2*b^4-65280*L^2*b^6+11520*a^4*b^4)*m^4+(162*L^8-1296*L^6*a^2-1296*L^6*b^2+2592*L^4*a^4+3456*L^4*a^2*b^2+2592*L^4*b^4-9216*L^2*a^6+20736*L^2*a^4*b^2-29952*L^2*a^2*b^4+7680*L^2*b^6+4608*a^4*b^4)*m^2+27*L^8-216*L^6*a^2-216*L^6*b^2+432*L^4*a^4+576*L^4*a^2*b^2+432*L^4*b^4-1152*L^2*a^4*b^2-384*L^2*a^2*b^4-256*L^2*b^6+768*a^4*b^4=0
(27*L^8-216*L^6*a^2-216*L^6*b^2+432*L^4*a^4+576*L^4*a^2*b^2+432*L^4*b^4-1152*L^2*a^4*b^2-384*L^2*a^2*b^4-256*L^2*b^6+768*a^4*b^4)*p^12+(162*L^8-1296*L^6*a^2-1296*L^6*b^2+2592*L^4*a^4+3456*L^4*a^2*b^2+2592*L^4*b^4-9216*L^2*a^6+20736*L^2*a^4*b^2-29952*L^2*a^2*b^4+7680*L^2*b^6+4608*a^4*b^4)*p^10+(405*L^8-3240*L^6*a^2-3240*L^6*b^2+6480*L^4*a^4+8640*L^4*a^2*b^2+6480*L^4*b^4+61440*L^2*a^6-201600*L^2*a^4*b^2+178560*L^2*a^2*b^4-65280*L^2*b^6+11520*a^4*b^4)*p^8+(540*L^8-4320*L^6*a^2-4320*L^6*b^2+8640*L^4*a^4+11520*L^4*a^2*b^2+8640*L^4*b^4-120832*L^2*a^6+339456*L^2*a^4*b^2-370176*L^2*a^2*b^4+115712*L^2*b^6+15360*a^4*b^4)*p^6+(405*L^8-3240*L^6*a^2-3240*L^6*b^2+6480*L^4*a^4+8640*L^4*a^2*b^2+6480*L^4*b^4+61440*L^2*a^6-201600*L^2*a^4*b^2+178560*L^2*a^2*b^4-65280*L^2*b^6+11520*a^4*b^4)*p^4+(162*L^8-1296*L^6*a^2-1296*L^6*b^2+2592*L^4*a^4+3456*L^4*a^2*b^2+2592*L^4*b^4-9216*L^2*a^6+20736*L^2*a^4*b^2-29952*L^2*a^2*b^4+7680*L^2*b^6+4608*a^4*b^4)*p^2+27*L^8-216*L^6*a^2-216*L^6*b^2+432*L^4*a^4+576*L^4*a^2*b^2+432*L^4*b^4-1152*L^2*a^4*b^2-384*L^2*a^2*b^4-256*L^2*b^6+768*a^4*b^4=0
(m,p)与x1的代数关系分别为:
(9*a^8-36*a^6*x1^2-24*a^4*b^2*x1^2+54*a^4*x1^4+48*a^2*b^2*x1^4-36*a^2*x1^6+16*b^4*x1^4-24*b^2*x1^6+9*x1^8)*m^16+(-312*a^8+672*a^6*x1^2-800*a^4*b^2*x1^2-336*a^4*x1^4+1088*a^2*b^2*x1^4-96*a^2*x1^6-512*b^4*x1^4-288*b^2*x1^6+72*x1^8)*m^14+(3580*a^8-7280*a^6*x1^2+8736*a^4*b^2*x1^2+4072*a^4*x1^4-8256*a^2*b^2*x1^4-624*a^2*x1^6+5056*b^4*x1^4-480*b^2*x1^6+252*x1^8)*m^12+(-15496*a^8+29792*a^6*x1^2-31968*a^4*b^2*x1^2-12592*a^4*x1^4+31680*a^2*b^2*x1^4-2208*a^2*x1^6-15872*b^4*x1^4+288*b^2*x1^6+504*x1^8)*m^10+(26742*a^8-55512*a^6*x1^2+48112*a^4*b^2*x1^2+31428*a^4*x1^4-49120*a^2*b^2*x1^4-3288*a^2*x1^6+22624*b^4*x1^4+1008*b^2*x1^6+630*x1^8)*m^8+(-15496*a^8+29792*a^6*x1^2-31968*a^4*b^2*x1^2-12592*a^4*x1^4+31680*a^2*b^2*x1^4-2208*a^2*x1^6-15872*b^4*x1^4+288*b^2*x1^6+504*x1^8)*m^6+(3580*a^8-7280*a^6*x1^2+8736*a^4*b^2*x1^2+4072*a^4*x1^4-8256*a^2*b^2*x1^4-624*a^2*x1^6+5056*b^4*x1^4-480*b^2*x1^6+252*x1^8)*m^4+(-312*a^8+672*a^6*x1^2-800*a^4*b^2*x1^2-336*a^4*x1^4+1088*a^2*b^2*x1^4-96*a^2*x1^6-512*b^4*x1^4-288*b^2*x1^6+72*x1^8)*m^2+9*a^8-36*a^6*x1^2-24*a^4*b^2*x1^2+54*a^4*x1^4+48*a^2*b^2*x1^4-36*a^2*x1^6+16*b^4*x1^4-24*b^2*x1^6+9*x1^8=0
(9*a^8-36*a^6*x1^2-24*a^4*b^2*x1^2+54*a^4*x1^4+48*a^2*b^2*x1^4-36*a^2*x1^6+16*b^4*x1^4-24*b^2*x1^6+9*x1^8)*p^16+(-312*a^8+672*a^6*x1^2-800*a^4*b^2*x1^2-336*a^4*x1^4+1088*a^2*b^2*x1^4-96*a^2*x1^6-512*b^4*x1^4-288*b^2*x1^6+72*x1^8)*p^14+(3580*a^8-7280*a^6*x1^2+8736*a^4*b^2*x1^2+4072*a^4*x1^4-8256*a^2*b^2*x1^4-624*a^2*x1^6+5056*b^4*x1^4-480*b^2*x1^6+252*x1^8)*p^12+(-15496*a^8+29792*a^6*x1^2-31968*a^4*b^2*x1^2-12592*a^4*x1^4+31680*a^2*b^2*x1^4-2208*a^2*x1^6-15872*b^4*x1^4+288*b^2*x1^6+504*x1^8)*p^10+(26742*a^8-55512*a^6*x1^2+48112*a^4*b^2*x1^2+31428*a^4*x1^4-49120*a^2*b^2*x1^4-3288*a^2*x1^6+22624*b^4*x1^4+1008*b^2*x1^6+630*x1^8)*p^8+(-15496*a^8+29792*a^6*x1^2-31968*a^4*b^2*x1^2-12592*a^4*x1^4+31680*a^2*b^2*x1^4-2208*a^2*x1^6-15872*b^4*x1^4+288*b^2*x1^6+504*x1^8)*p^6+(3580*a^8-7280*a^6*x1^2+8736*a^4*b^2*x1^2+4072*a^4*x1^4-8256*a^2*b^2*x1^4-624*a^2*x1^6+5056*b^4*x1^4-480*b^2*x1^6+252*x1^8)*p^4+(-312*a^8+672*a^6*x1^2-800*a^4*b^2*x1^2-336*a^4*x1^4+1088*a^2*b^2*x1^4-96*a^2*x1^6-512*b^4*x1^4-288*b^2*x1^6+72*x1^8)*p^2+9*a^8-36*a^6*x1^2-24*a^4*b^2*x1^2+54*a^4*x1^4+48*a^2*b^2*x1^4-36*a^2*x1^6+16*b^4*x1^4-24*b^2*x1^6+9*x1^8=0
好了,此至所有两个变元关系已经清楚了! |
|