找回密码
 欢迎注册
楼主: 王守恩

[讨论] 有回味的题目

  [复制链接]
 楼主| 发表于 2025-7-10 06:09:49 | 显示全部楼层
2025中国科技大学强基计划数学试题 ——第7题——

\(将1,2,3,...,10十个数重新排列,得到新序列{a_{1},a_{2},a_{3},...,a_{10}},若|a_{i} - i| ≤1。求满足条件的排列数量。\)

点评

i-2≤a(i)≤i+7,  发表于 2025-8-25 16:05
举个具体例子。  发表于 2025-8-25 15:18
不好做—— i-2≤a(i)≤i+k,——详见《分球问题》。谢谢!  发表于 2025-8-25 14:37
递归推导。  发表于 2025-8-25 14:23
主帖 = i-1≤a(i)≤i+1——89——正确!这样: i-1≤a(i)≤i+k, 会做。这样: i-j≤a(i)≤i+k, 也会做。  发表于 2025-8-25 14:02
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-7-30 11:12:21 | 显示全部楼层
在△ABC中, 内角A,B,C的对边分别为a,b,c。若A = 2B,  则a^2 = b^2 + b*c。

点评

利用角平分线定理和三角形相似很容易得证。  发表于 2025-8-25 11:03
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-8-25 06:33:53 | 显示全部楼层
Table[N[(10^(9 a) - 1)/(10^9 - 1)^a, 100], {a, 15}] —— 每一行都还是有理数吗?
1.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
1.000000002000000002000000002000000002000000002000000002000000002000000002000000002000000002000000002,
1.000000003000000006000000009000000012000000015000000018000000021000000024000000027000000030000000033,
1.000000004000000010000000020000000034000000052000000074000000100000000130000000164000000202000000244,
1.000000005000000015000000035000000070000000125000000205000000315000000460000000645000000875000001155,
1.000000006000000021000000056000000126000000252000000461000000786000001266000001946000002877000004116,
1.000000007000000028000000084000000210000000462000000924000001715000002996000004977000007924000012166,
1.000000008000000036000000120000000330000000792000001716000003432000006434000011432000019412000031704,
1.000000009000000045000000165000000495000001287000003003000006435000012870000024309000043749000075537,
1.000000010000000055000000220000000715000002002000005005000011440000024310000048620000092377000167950,
1.000000011000000066000000286000001001000003003000008008000019448000043758000092378000184756000352715,
1.000000012000000078000000364000001365000004368000012376000031824000075582000167960000352716000705432,
1.000000013000000091000000455000001820000006188000018564000050388000125970000293930000646646001352078,
1.000000014000000105000000560000002380000008568000027132000077520000203490000497420001144066002496144,
1.000000015000000120000000680000003060000011628000038760000116280000319770000817190001961256004457400,

每一行都还是有理数吗?——譬如第3行。
1.000000003000000006000000009000000012000000015000000018000000021000000024000000027000000030000000033000000036000000039000000042000000045000000048000000051000000054000000057000000060000000063
000000066000000069000000072000000075000000078000000081000000084000000087000000090000000093000000096000000099000000102000000105000000108000000111000000114000000117000000120000000123000000126
000000129000000132000000135000000138000000141000000144000000147000000150000000153000000156000000159000000162000000165000000168000000171000000174000000177000000180000000183000000186000000189
000000192000000195000000198000000201000000204000000207000000210000000213000000216000000219000000222000000225000000228000000231000000234000000237000000240000000243000000246000000249000000252
000000255000000258000000261000000264000000267000000270000000273000000276000000279000000282000000285000000288000000291000000294000000297000000300000000303000000306000000309000000312000000315
000000318000000321000000324000000327000000330000000333000000336000000339000000342000000345000000348000000351000000354000000357000000360000000363000000366000000369000000372000000375000000378
000000381000000384000000387000000390000000393000000396000000399000000402000000405000000408000000411000000414000000417000000420000000423000000426000000429000000432000000435000000438000000......
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2025-8-25 16:21:06 | 显示全部楼层
王守恩 发表于 2025-7-10 06:09
2025中国科技大学强基计划数学试题 ——第7题——

\(将1,2,3,...,10十个数重新排列,得到新序列{a_{1},a_{2 ...

大概递归思路差不多。举个简单的,$$i-1\leq a(i) \leq  i+2$$,如图。
dp(n)=2*dp(n-2)+2*dp(n-3)+dp(n-4).
203.png

点评

找——i-2≤a(i)≤i+7——通项公式——不好做  发表于 2025-8-26 09:52
哪里不好做?  发表于 2025-8-26 08:53
数学研发论坛»论坛›【数学研究】›刨根究底›分球问题  发表于 2025-8-26 05:23
啥分球问题?有链接么?  发表于 2025-8-25 18:18
i-1≤a(i)≤i+1,i-1≤a(i)≤i+2,...,i-1≤a(i)≤i+7,...,都好做。就是i-2≤a(i)≤i+7不好做。——详见《分球问题》。  发表于 2025-8-25 17:47
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 前天 16:27 | 显示全部楼层
正整数 a, b, c,   a < b < c 且满足:  a 是 b + c 的因子;  b 是 c + a 的因子;  c 是 a + b 的因子。

称这样的 a, b, c 为"三元好组"。若 a + b + c ≤ 2025,  有多少组这样的"三元好组"?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-9-9 01:24 , Processed in 0.046072 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表