- 注册时间
- 2009-6-4
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 11286
- 在线时间
- 小时
|
发表于 2010-8-16 08:23:39
|
显示全部楼层
本人多年前曾对蒙提霍尔问题分析研究过,在此谈谈我的看法。
允许我在此先把问题“严格”叙述一下,下面你将看到,如果问题提的稍微变一点点,此问题的性质就会完全不一样:
美国有一家报纸,叫做<<行进>>(Parade)。在它的星期日增刊上,有一个专栏,叫做“请问玛丽莲”(Ask Marilyn)。在这个专栏中,常有一些有趣的问题,要广大读者作答,当然,最后权威的解答由主持人“玛丽莲小姐”给出。在1990年9月9日的“请问玛丽莲”专栏中,有这样一个问题:
电视节目主持人请你参加一项有奖游戏,就像我国很多电视台节目中的“请你参加”一样。主持人让你看3扇关着的门,这3扇分别编上了号码:1号门、2号门和3号门。主持人告诉你:其中一扇门后面是一辆汽车,另两扇门后面各有一头山羊,你可以从中选择一扇门,选定后,这扇门后面的东西就归你了。这可是太富有刺激性了!
你当然希望得到一辆汽车,但是此时此刻,你只能凭运气,随机地选择一扇门,除此别无他法。比方说你选择了1号门。但这时主持人﹙他知道汽车藏在哪扇门后面﹚打开了另两扇门的一扇,如果他打开了3号门,让你看到这后面是一头山羊,并对你说,现在给你一个机会,允许你改变原先的选择,请你考虑一下:是仍然选择1号门,还是改而选择2号门。这时,你该怎么办?
应该说这道题目的设计者真是诡计多端,他﹙她﹚把一道概率论方面的数学问题用通俗的方式表达出来,并用一种“节外生枝”的手法把问题弄得扑遡迷离。还是先让我们用概率论的术语把问题表达清楚:在这种情况下,是仍然选择1号门而获得汽车﹙即汽车是藏在1号门后面﹚的概率大,还是改而选择2号门获得汽车﹙即汽车是藏在2号门后面﹚的概率大?
大概玛丽莲小姐自己也没有料到,当她的“权威性”答案公布以后,在美国引起了轰动.从二年级的小学生到研究生,甚至具有博士学位的读者,纷纷写信报社,对玛丽莲小姐的答案提出了自己的看法.在这成千上万的来信中,有90%认为玛丽莲小姐的答案是错误的.据说这90%的读者中,有约1000位是博士;甚至在卷入这场讨论的美国大学教授中,也有三分之二对玛丽莲小姐的答案持反对意见。
先在让我们来看看玛丽莲小姐的答案和大多数读者的看法。
玛丽莲小姐的答案:玛丽莲小姐说,这时你应该改而选择2号门,因为本来汽车藏在1号门后面的概率1/3﹙一共有3扇门,汽车藏在其中任何一扇门后面的概率都一样,故各为1/3﹚,而藏在2号3号门后面的概率2/3。现3号门被排除了,汽车藏2号门后面的概率就增加到2/3了。
大多数读者的看法:既然现在3号门后面不是汽车,那末汽车藏在1号门后面和藏在2号门后面的概率是相等的,各为1/2,故仍选择1号门和改而选择2号门都一样,无所谓。
玛丽莲小姐振振有词,似无懈可击;大多数读者的看法理由明了,似符合直觉.问题出在哪里呢?
这是近二十年年前引起众人注目的一道概率论方面的数学问题。这道题目的关键在什么地方? 改而选择2号门获得汽车﹙即汽车是藏在2号门后面﹚的概率P为多大? 什么情况下玛丽莲小姐的结论(P=2/3)是对的? 什么情况下大多数读者的结论(P=1/2)是对的?
本人以为,这个有趣问题的关键是:问题似乎已将条件都给出,应有一个确定的答案。但实际上若要有一个确定的答案,问题所给出的条件是不够的。
先通俗讲一讲这个问题的实质是:
若q是不大于1的非负实数,问题2:1/(1+q)大于1/2还是不大于1/2?
对于问题2,我想一般学过数学的人都能正确回答:条件不够,不能得出确定答案,除非你告诉我q等于多少。
这个问题的妙处在于经过包装后,绝大多数人看不出其本质就是问题2。
下面给出这个问题的正解:
这个问题中的众多解答中,我认为最完美解答之一是美国得克萨斯大学的 Leonard Gillman教授(美国著名数学家,曾担任过两年美国数学协会主席)在1992年在The American Mathematical Monthly(《美国数学月刊》1992年1月号)上发表的论文 The Car and Goats(《汽车与山羊》)。Gillman教授在这篇论文中,对这个问题作了精辟分析,计算了改而选择2号门获得汽车﹙即汽车是藏在2号门后面﹚的概率P,并讨论了一些关于概率事件理论结果同直觉经验之间矛盾的问题。
根据 Gillman教授的分析计算,对于本问题不难得出以下结论:
1) 改而选择2号门获得汽车﹙即汽车是藏在2号门后面﹚的概率P=1/(1+q)。
其中q是当汽车是藏在1号门后面时,主持人打开3号门的概率。
2) 在当汽车是藏在1号门后面时,主持人打开3号门的概率为1/2(即这时主持人打开2号门概率和打开3号门概率是一样的)条件下,P=2/3,玛丽莲小姐的结论是对的。
3) 在当汽车是藏在1号门后面时,主持人打开3号门的概率为1(即这时主持人总打开3号门)条件下,P=1/2,大多数读者的结论是对的。
最后再补充本人对这个有趣问题的另一点看法:
这个趣题的特点在于提法通俗易懂,答案出乎意料。不足之处是其在游戏实用中的乏味性,因为当汽车是藏在3号门后面或主持人要打开2号门时,主持人只好说:“对不起,为了正确计算概率,这次不算,请重新再来一次。” 为避免这不足之处,可以在问题中去掉如果打开了3号门,即问题改为:•••比方说你选择了1号门。但这时主持人﹙他知道汽车藏在哪扇门后面﹚打开了另两扇门的一扇,让你看到这后面是一头山羊,并对你说,现在给你一个机会,允许你改变原先的选择,请你考虑一下:是仍然选择1号门,还是改而选择另一扇没打开的门。这时,你该怎么办? 改而选择另一扇没打开的门获得汽车的概率P为多大? 这样一改,游戏时的趣味性提高了,但答案变成唯一确定的(P=2/3),问题成为一道普通的概率题而变得乏味了。真是左右为难啊! |
|